

ISRO VSSC Tech Asst. (Mechanical) 11 Feb 2024

Visit - teachingninja.in

ger 0,37,62 wring Tengin	Speg Ratio	71 AH	unle 68 67
miss (72,55) Not Atur = 443,30	55,7245/	69,74	इसमें डिल्क
Not Hand - M	49		भारत सरकार/Government of Indi
9 Per			अंतरिक्ष विभाग/Department of Sp.

a

विक्रम साराभाई अंतरिक्ष केंद्र/ VIKRAM SARABHAI SPACE CENTRE

तिरुवनंतपुरुम/ Thiruvananthapuram - 695 022

तकनीकी सहायक - यांत्रिक (विज्ञा.सं.323) के पद पर चयन हेत् लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT - MECHANICAL (ADVT. NO. 323) पद सं.1480/Post No.1480

	ਗਿੰथ/Date: 11.02.2024
सर्वाधिक अंक/Maximum Marks : 80	समय/Time. 90 मिनट/90 minutes
अभ्यर्थी का नाम/Name of the candidate :	अनुक्रमांक सं/Roll no.

अभ्यर्थियों के लिए अन्देश/Instructions to the Candidates

1. आपके द्वारा वेब आवेदन में प्रस्त्त किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता नहीं रखते हैं तो आपकी अभ्यर्थिता अस्वीकृत कर दी जाएगी।

You have been called for the written test based on the online data furnished by you in the web application. If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.

- 2. प्रश्न-पत्र, 80 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 90 मिनट है। The Question paper is in the form of Question Booklet with 80 questions and the duration of the test is 90 minutes.
- 3. चार विकल्पों सहित वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्ध रूप से सही होगा। The questions will be objective type with four options out of which only one will be unambiguously correct.
- 4. प्रत्येक प्रश्न केलिए 01 अंक होंगे और प्रत्येक गलत उत्तर केलिए 0.33 अंक काटा जाएगा। Each question carries 01 mark and 0.33 marks will be deducted for each wrong answer.

कृपया दूसरा पृष्ठ देखें/P.T.O.

तकनीकी सहायक (यांत्रिक) / TECHNICAL ASSISTANT (MECHANICAL)

बिंदु (-2,3) से गुजरने वाले वक्र का समीकरण ज्ञात कीजिए, दिया गया कि किसी भी बिंदु (x,y) पर वक्र की स्पर्श रेखा का ढलान $\frac{2x}{y^2}$ है।

Find the equation of the curve passing through the point (-2,3), given that the slope of the tangent to the curve at any point (x, y) is $\frac{2x}{v^2}$.

(a)
$$y^3 + x^2 - 23 = 0$$

(b)
$$y^3 - 3x^2 - 15 = 0$$

(c)
$$y^3 - x^2 + 5 = 0$$

(d)
$$y^3 - 3x^2 - 1 = 0$$

एक विनिर्माण फर्म Rs. 30,000 की एक निश्चित लागत लगाती है। परिवर्तनीय लागत Rs. 10 प्रति यूनिट और बिक्री मूल्य Rs. 25 है। उत्पादित किए जाने वाले उत्पादों की संख्या निर्धारित करें ताकि बाजार मूल्य उत्पाद की मूल लागत के बराबर हो।

A manufacturing firm incurs a fixed cost of Rs. 30,000. The variable cost is Rs. 10 per unit and selling price is Rs. 25. Determine the number of products to be produced so that the market price is just equal to the original cost of the product.

निम्नलिखित में से किस बियरिंग में प्रणोद भार सहने की क्षमता सबसे कम है?

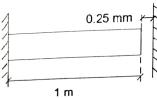
Which of the following bearings has least capability for withstanding thrust load?

- (a) डीप ग्रूव बॉल बेयरिंग / Deep groove ball bearing
- (b) कोणीय संपर्क बेयरिंग / Angular contact bearing
- (c) टेपर रोलर बेयरिंग / Taper roller bearing
- (d) बेलनाकार रोलर बेयरिंग / Cylindrical roller bearing

(1) CO2 लेज़र की तरंगदैर्घ्य होती है The wavelength of CO2 laser is

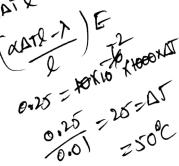
- (a) 1064 नैनोमीटर / nanometer
- (b) 10.60 माइक्रोमीटर / micrometer
- (c) 1.064 नैनोमीटर / nanometer
- (d) 0.1064 माइक्रोमीटर / micrometer

तीसरे कोण प्रक्षेपण में संदर्भ रेखा और शीर्ष दृश्य की स्थिति क्या है?


The positions of reference line and top view in 3rd angle projection are?

- (a) संदर्भ रेखा शीर्ष दृश्य के ऊपर स्थित हैं / reference line lies above the top view
- (b) संदर्भ रेखा शीर्ष दृश्य के नीचे स्थित हैं / reference line lies below the top view
- (c) संदर्भ रेखा शीर्ष दृश्य के बाई ओर स्थित है / reference line lie left side to top view
- (d) संदर्भ रेखा शीर्ष दृश्य के दाई ओर स्थित है / reference line lie right side to top view

 $25~^{\circ}\mathrm{C}$ के तापमान पर एक स्टील बार पर विचार करें जैसा कि नीचे दिए गए चित्र में दिखाया गया है। 25 °C क तापमान पर रेन रेन रहता है? मान लें कि प्रारंभिक लंबाई, L=1~m, तापीय विस्तार गुणांक = 10×10^{-6} /°C


Consider a steel bar at a temperature of 25 °C as shown in the below figure. Up to what Consider a steel par at a temperature temperature is the bar stress free? Assume that initial length, L = 1 m, Coefficient of thermal

expansion = 10×10^{-6} °C.

- 70°C (a)
- 60 °C (c)

- 50 °C (b)
- 80°C (d)

निम्नलिखित में से सबसे उपयुक्त क्रॉस-सेक्शन विकल्प क्या है यदि एक शुद्ध मोड़ के अधीन कैंटिलीवर बीम को कच्चे लोहे से बनाया जाना है?

What is the most suitable cross-section choice among the following when a cantilever beam subjected to pure bending has to be made of cast iron?

- आयताकार / Rectangular
- गोलाकार / Circular
- JTRS C

टी खंड / T section (c)

वर्ग / Square (d)

निम्नितिखित में से कौन बीम के बंकन आघूर्ण और अपरूपण बल के संबंध में सही है?

Which of the following is correct with respect to the bending moment and shear force of a beam?

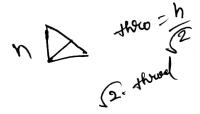
V = dM/dx(a)

M = dV/dx

V = M.x(c)

M = Vx(d)

- पर कार्य करता है एयर रेफ्रिजरेटरं -


Air refrigerator works on

- बेल कोलमैन साइकिल / Bell Coleman Cycle
- रैंकिन चक्र / Rankine cycle (b)
- कार्नोट चक्र / Carnot cycle (c)
- दोनों (a) और (b) / Both (a) and (b)

बट वेल्डेड जोड़ में वेल्ड का आकार — के बराबर होता है

The size of the weld in butt welded joint is equal to

- 0.5 imes वेल्ड का गला / 0.5 imes Throat of Weld
- वेल्ड का गला / Throat of Weld (b)
- $\sqrt{2}$ × वेल्ड का गला / $\sqrt{2}$ × Throat of Weld
- $2 \times$ वेल्ड का गला / $2 \times \text{Throat of Weld}$

1480

 \mathbf{B}

11.
$$\lim_{x\to 1}\frac{x^8-1}{x^4-1}$$
 ज्ञात कीजिए

Find
$$\lim_{x\to 1} \frac{x^8 - 1}{x^4 - 1}$$

- (a)

- 0 (b)
- (d)

एक शाफ्ट को घुमाने के ऑपरेशन के लिए प्रयुक्त समय 5 मिनट देखा गया है। यदि प्रदर्शन रेटिंग 130% है और अनुमत समय सामान्य समय का 10% हैं, तो इस कार्य के लिए मानक समय क्या है?

The observed time for an operation of turning a shaft is 5 minutes. If the performance rating is 130% and allowances are 10% of the normal time, then what is the standard time for this job?

7.15 मिनट / minutes (a)

5.85 मिनट / minutes (b)

3.85 मिनट / minutes (c)

- 6.5 मिनट / minutes (d)

उत्पाद की गुणवत्ता विशेषताओं को मापने के लिए किस सांख्यिकीय प्रक्रिया-नियंत्रण-चार्ट का उपयोग किया जाता है?

Which of the statistical process control chart is used for measuring the quality characteristics of a product?

P चार्ट / Chart (a)

C चार्ट / Chart

U ਚਾਣ / Chart (c)

R चार्ट / Chart

एक प्लेटीनम RTD, जिसका प्रतिरोध $0\,^{\circ}\mathrm{C}$ पर $100\,\Omega$ तथा $100\,^{\circ}\mathrm{C}$ पर $138.5\,\Omega$ है। इसके लिए $100\,^{\circ}\mathrm{C}$ पर प्रतिरोध गुणांक कितना होगा?

For a Platinum RTD the resistance at 0 °C is 100 Ω and resistance at 100 °C is 138.5 Ω . What is its coefficient of resistance at 100 °C.

0.00385/°C (a)

38.5/°C (b)

0.001385/°C (c)

1.385/°C (d)

्रार्क एक बिंदु P का बिन्दुपथ जो दो निश्चित बिंदुओं A और B से समान दूरी पर है, — Locus of a point P, equidistant from two fixed points A and B, is

- एक दीर्घवृत्त / an ellipse (a)
- AB के मध्य बिंदू से गुजरने वाली AB पर लंबवत एक रेखा / a line perpendicular to AB passing through the midpoint of AB
- एक वृत्त जिसमें AB सबसे बड़ी जीवा है / a circle with AB as largest chord (c)
- AB की एक समानांतर रेखा / a parallel line of AB (d)

18. एक सरल समर्थित बीम को इसके स्पैन के केंद्र पर एक केंद्रित भार के अधीन किया जाता है और दूस मामले में उसी भार को उसके पूरे स्पैन पर समान रूप से वितरित किया जाता है। यदि दोनों मामलों में बीम में उत्पन्न बंकन प्रतिबल क्रमशः σ_A और σ_B है, तो निम्नलिखित में से कौन सही है?

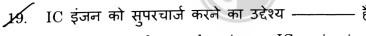
A simply supported beam is subjected to a concentrated load at the center of span and in another case the same load is uniformly distributed over its entire span. If maximum bending stress generated in the beam in both cases are σ_A and σ_B respectively, then which of the

following is correct?

(a)
$$\sigma_A = 0.25\sigma_B$$

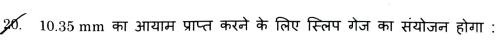
(d)
$$\sigma_A = 1.00 \, \sigma_B$$

 $\sigma_{A} = 0.25\sigma_{B}$ $\sigma_{A} = 2.00\sigma_{B}$ $\sigma_{A} = 0.50\sigma_{B}$ $\sigma_{A} = 0.50\sigma_{B}$ $\sigma_{A} = 1.00\sigma_{B}$ दो पेचदार संपीड़न स्प्रिंग्स A और B हैं और उनकी कठोरता $K_A > K_B$ जानें। जब उन दोनों पर समान भार डाला जाता है तो कौन सा स्प्रिंग अधिक तनाव ऊर्जा संग्रहीत करता है?


Consider two helical compression springs A and B with their stiffness $K_{\underline{A}} > K_{\underline{B}}$. When both of them are subjected to the same load then which spring stores more strain energy?

- **(**b) В
- दोनों समान ऊर्जा संग्रहीत करते हैं / Both store same energy (c)
- अपर्याप्त जानकारी / Insufficient information (d)

किसी पदार्थ का यंग मापांक 260 GPa है और प्वासों का अन्पात 0.3 है। तो इसके थोक मापांक और कठोरता मापांक के मान क्या हैं?


Young's Modulus of a material is 260 GPa and Poisson's ratio is 0.3. Values of bulk modulus and rigidity modulus are?

- 150.1 GPa और / and 100 GPa
- 216.7 GPa और / and 100 GPa (b)
- 216.7 GPa और / and 80.4 GPa (c)
- 170.7 GPa और / and 85.3 GPa (d)

The purpose of supercharging an IC engine is

- शोर को कम करने के लिए / to decrease the noise (a)
- विशिष्ट ईंधन खपत को कम करने के लिए / to decrease specific fuel consumption (b)
- सिलेंडरों की कृलिंग कम करने के लिए / to decrease cooling of cylinders (c)
- इंजनों का पावर आउटपुट बढ़ाने के लिए / to increase power output of engines (d)

The combination of slip gauges to obtain a dimension of 10.35 mm will be

6

10.00 + 0.30 + 0.05

8.00 + 1.30 + 1.05(b)

(c) 10.00 + 0.35

(d) 5.00 + 4.00 + 1.00 + 0.35

1480

В

pl	. समय	x ' t ' के सापेक्ष x अक्ष में एक कण की x	स्थिति 🤉	$c = 4 - 27t + 3t^3$ (x मीटर	में और t सेकंड में)			
-		द्वारा दी गई है, वह समय जिस पर कण का वेग शून्य होगा, ——— है। A particle's position in the x axis with respect to time ' t ' is given by $x = 4 - 27t + 3t^3$, (x in						
	mete	rs and t in seconds). The time at which	spect to the par	rticle velocity is zero is	-4-211+31°, (x m			
		1 s	(b)	3 s	v=-27+440 743			
l/	(c)	0 <i>s</i>	(d)	1.732 s	= 4 - 271 + 36°, (3 III v = -17+42 = 0 42 = 27-3 रिक दबाव के अधीन है,			
/ 67K 1 22.	एक ब	ॉयलर शेल, 400 mm व्यास और 15 mm प	जेट की	मोटाई. 15 MPa के आंर्ता	रेक दबाव के अधीन है,			
1		रेधीय प्रतिबल होगा	VIC 441	· · · · · · · · · · · · · · · · · · ·				
860	A boi! 15 M	ler shell 400 mm diameter and plate th Pa, then the hoop stress will be	nicknes	s 15 mm is subjected to	internal pressure of			
	. ,	30 MPa	(b)	50 MPa	YOU THE STATE OF T			
-60	(c)	100 MPa	(d)	200 MPa				
28.	⁄ एक प्र	शीतन प्रणाली का कंडेनसर 90 KW की दर	से ऊष	मा निरसन करता है. जर्बा	कि कंप्रेसर 30 KW की			
7		ा की खपत करता है। सिस्टम का निष्पादन						
	A con	denser of a refrigeration system rejec	ts heat	at a rate of 90 KW, w	while the compressor			
	consu	mes a power of 30 KW. The coefficient	of perf	ormance of the system v	would be			
	` '	1/2	(b)	3	7 7030			
	(c)	1/3	(d)	2				
24.	(w' N/1	m परिमाण के समान रूप से वितरित भार व	के साथ	एक सरल समर्थित बीम र्व	जो अधिकतम ढलान			
	क्या है				36			
	What magni	is the maximum slope of a simply suitude 'w' N/m?	upporte	d beam with uniformly	y distributed load of			
	(a)	wl^3	(b)	$\frac{\mathrm{wl}^3}{}$	A TOP			
	(a)	24 EI	(2)	48 EI	2962			
	(c) -	\mathbf{wl}^3	(d)	$\frac{\mathbf{wl}^3}{\mathbf{v}^2}$				
	(0)	2EI	, ,	6EI				
07/		न डिस्क क्लच में, यदि \mathbf{n}_1 ड्राइविंग शाफ	टपर्ग	देस्क की संख्या है और	n。 संचालित शाफ्ट पर			
28.	मिल्टापर	न्न ।इस्क क्लय में, पाप मा प्रारायण सार की संख्या है, तो संपर्क सतहों के जोड़े की र	ं गंख्या हो	गी				
		nultiple disc clutch, if n_1 are the num			shaft and n ₂ are the			
	numbe	er of discs on the driven shaft, then the	e numb	er of pairs of contact su	urfaces will be			
		$n_1 + n_2$	(b)	$(n_1 + n_2) - 1$	133			
		$n_1 + n_2 + 1$	(d)	$(n_1 + n_2)/2$	الملا			
		• • • • • • • • • • • • • • • • • • •	n Cur ı					
(26)		परिचालन के लिए पदार्थ ——— होनी च						
		als subjected to rolling operations sho		-1				
	(a)	न्य / Ductile	(b)	लौह / Ferrous				
-	(c) ल	चीला / Malleable	(d)	उपरोक्त में से कोई नहीं	/ None of the above			
R			7		1480			

Teachingninja.in

В

यदि 600 rpm पर घूमने वाले पहिये पर दांतों की संख्या 90 है, तो 1200 rpm पर घूमने वाले मेटिंग पिनियन पर दांतों की संख्या है If the number of teeth on the wheel rotating at 600 rpm is 90, then the number of teeth on the Tees mating pinion rotating at 1200 rpm is 45 (a) (d) (c) 20 निम्नलिखित में से, अकेले ग्रुत्वाकर्षण के प्रभाव में तैरते हुए पिंड की स्थिरता के लिए, कौन सा सत्य है? For a floating body in a stable equilibrium, under the influence of gravity alone, which of the following is true? 5 मेटासेंटर CG से नीचे होना चाहिए / Metacentre should be below CG (a) मेटासेंटर CG से ऊपर होना चाहिए / Metacentre should be above CG मेटासेंटर और CG को एक ही क्षैतिज रेखा पर स्थित होना चाहिए / Metacentre and CG must lie (c) on the same horizontal line मेटासेंटर और CG को एक ही होना चाहिए / Metacentre and CG must coincide (d) आयरन कार्बन आरेख में यूटेक्टिक बिंदु पर कार्बन का प्रतिशत कितना है? What is the percentage of Carbon at the Eutectic point in Iron Carbon diagram? 2.14 (a) 0.76(c) 4.30 (d) 5.56 निमग्न आर्क वेल्डिंग में कार्बन स्टील तारों की कॉपर कोटिंग का उद्देश्य है The purpose of copper coating of carbon steel wires in submerged arc welding is to वेल्ड में तांबा जोड़ना / add copper to the weld (a) गर्म दरार को रोकना / prevent hot cracking (b) तार को जंग लगने से बचाना / prevent rusting of the wire (c) टॉर्च को ठंडक प्रदान करना / provide cooling for the torch (d) रेड्यूसर गियर ट्रेन की दक्षता का परीक्षण करने के लिए इनपुट छोर पर 1440 rpm की गति पर 1 KW इनप्ट दिया गया और आउटपुट छोर पर मापा गया टॉर्क 56.36 Nm था। यदि इस इकाई में गति में कमी का अन्पात 10:1 है, तो दक्षता लगभग ———— है। In order to test the efficiency of reducer gear train 1 KW input was given at the input end at a speed of 1440 rpm and at the output end the measured torque was 56.36 Nm. If the ratio of speed reduction in this unit is 10:1, the efficiency is about (a) 78 % (b) 85 % (c) 63 % B

Teachingninia.in

32.	्र पृथ्वी	ो पर स्प्रिंग द्रव्यमा	न प्रणाली की प्राकृतिक .	भावन्ति	्र है। चंद्रमा प	र दम पणाती	കി ധക്കി	क भावन्ति	
2	[g _{mo}	$g_{\text{oon}} = g_{\text{earth}}/6$ $\frac{1}{8}$ '—		31191((1	ר וויעשו ה	C SCI Malicil	यम आसृमत	વર ગાવૃાલ	
	The syst	natural frequence em on the moon i	ey of a spring mass s s [g _{moon} = g _{earth} /6] is	system	on earth is ω_n	. The natura	_	C.V0	
	(a) (c)	$\omega_n \ 0.204 \ \omega_n$		(b) (d)	$0.408 \ \omega_n$ $0.167 \ \omega_n$		180	688 = 56	2.2
<i>3</i> 3.	एक	कंपनी की एक वर्ष	में 12000 इकाइयों की	मांग है	। एक महीने के	लिए एक इका	ई की भंड	ारण लागत	
•	मूल	इकाई लागत का 2	:0% है। एक रन के ि ने के लिए ऑर्डरों की इ	ए सेट	अप लागत रु. 🗆	120 और इका	ई लागत	रु. 120 है।	. 10
	A co	mnany has a don	and of 10000		mı ,	goat of one v	init for a	,1.	LOX12
	20%	of the unit cost.	The set up cost for on	e run is	$_{ m s}$ Rs. 120 and $_{ m t}$	he unit cost i	is Rs. 120	What is 2	بره٪
	the (a)	optimal number o 100	of orders to meet the	yearly d	lemand?		(20)	0 . 1200	0 1911
	(a) (c)	120		(b) (d)	200 240		1-00	ar.	46120
34.	यदि	किसी पिंड पर कार	र्प करने वाले प्रमुख और	तघ म	ख्य-प्रतिबल क्रम	। १शः 100 MPa	और –60	0 MPa 青,	= 100
	तो अ	निधकतम अपरूपण	प्रतिबल किसके बराबर ह	ु होगा?				•	
			inor principal stress maximum shear str			are 100 M	Pa and		
	(a)	20 MPa		(b)	40 MPa		A	D=160	
	(c)	80 MPa		(d)	160 MPa	279,310	, 4	R = 80	
<i>3</i> 5.	6°C	और 37°C के बीच	कार्य करने वाले कार्नोट	पंप क्रा	COP ह	241,510		TL	
-			oump operating betw	240	-	7	1- TS	TL-TS	
	(a)	10		(b)	5	η_{ϵ}	TL	100)
	(c)	20	CI AD	(d)	2			310	

निम्नलिखित समीकरण का आईर और डिग्री ज्ञात कीजिए

Find the order and degree of the following equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^3 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$$

(a) 3, 2

(b) 2, 3

(c) 3, 3

(d) 2, 2

आगमित वायु के बढ़ते तापमान के साथ, IC इंजन दक्षता ——— With increasing temperature of intake air, IC engine efficiency

(9)8-1

- (a) ਬਟਨੀ हੈ / decreases
- (b) बढ़ती हैं / increases
- (c) वही रहती है / remains same
- (d) अन्य कारकों पर निर्भर करती है / depends on other factors

38. $\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$ ज्ञात कीजिए

Find $\int \frac{e^{\tan^{-1}x}}{1+x^2} dx$

 $e^{\sec(x)} + C$ (a)

 $e^{\left(\frac{1}{1+x^2}\right)} + C$ (b)

 $e^{(1+x^2)} + C$ (c)

 $e^{\tan^{-1}x} + C$ (d)

सिंगल स्टार्ट M24 imes 3 बोल्ट के लिए लीड -

For a single start M24 \times 3 bolt the lead is

3 mm(a)

(b) 1.5 mm

(c) 24 mm (d) 8 mm

निम्नलिखित में से कौन सा ज्यामितीय आयाम प्रतीक समतलता को दर्शाता है? Which of the following geometric dimensioning symbol indicates flatness?

(a)

(b)

(c)

(d)

यदि किसी भार दवारा खींचे गए तार का व्यास दोग्ना कर दिया जाए, तो इसका यंग मापांक होगा If the diameter of wire stretched by a load is doubled, then its Young's modulus will be

- दोग्ना / doubled (a)
- चार ग्ना / four times (b)
- एक-चौथाई / one-fourth (c)
- अप्रभावित रहता है / remains unaffected (d)

9.81 पोइज़ श्यानता वाले स्नेहन तेल जिसे $10~\mathrm{cm}$ दूर रखी $2~\mathrm{समानांतर}$ प्लेटों के बीच भरा गया, जिसका सापेक्ष वेग 2 m/s स्नेहन तेल में उत्पन्न अपरुपण प्रतिबल ——— होगा।

The shear stress developed in a lubricating oil, of viscosity 9.81 poise, filled between 2 parallel plates 10 cm apart and moving with relative velocity of 2 m/s is

 39.2 N/m^2 (a)

(b) 19.6 N/m^2

 9.8 N/m^2 (c)

(d) 50 N/m^2

विद्युत चुम्बकीय स्पेक्ट्रम में दृश्य क्षेत्र से संबंधित तरंग दैर्ध्य की सीमा क्या है?

What is the range of wavelengths that belong to the visible region in the electromagnetic spectrum?

(a) 400-700 nm (b) 1000-2500 nm

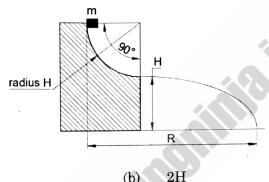
10-300 nm (c)

(d) 5000-10000 nm

उस त्रिभुजं का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष (-3,4), (3,-2) और (3,5) हैं

Find the area of a triangle whose vertices are (-3,4), (3,-2) and (3,5)

15 (a)

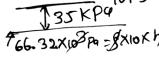

42 (b)

21 (c)

(d) 33 1 (-3(4-2)+3(-2-5)+3(5-4))

यदि 'm' द्रव्यमान की वस्तु आराम से त्रिज्या 'H' की घर्षण रहित घुमावदीर सतह से नीचे फिसलती है और सतह के नीचे क्षैतिज रूप से प्रक्षेपित होती है और आगे वस्तु ऊर्ध्वाधर ऊंचाई 'H' से गिरती है जैसा कि चित्र में दिखाया गया है। वस्तु द्वारा अपनी प्रारंभिक स्थिति से प्राप्त क्षैतिज सीमा 'R' है

If the object of mass 'm' slides down a frictionless curved surface of radius 'H' from rest and is projected horizontally at the bottom of the surface and further the object falls through a vertical height 'H' as shown in the figure. The horizontal range 'R' achieved by the object from its initial position is


- (a) 3H
- (c) Η

- (b)
- (d) 4H

सामान्य वायुमंडलीय दबाव (760 mm पारा) पर गेज 35 KN/m² का वैक्यूम दबाव रिकॉर्ड करता है। पानी में (मीटरों में) यह पूर्ण दबाव कितना होगा?

At normal atmosphere pressure (760 mm of mercury) the gauge records a vacuum pressure of 35 KN/m². What is the absolute pressure in metres of water?

- 8.52 m पानी / of water (a)
- 7.52 m पानी / of water (b)
- 9.62 m पानी / of water (c)
- 6.76 m पानी / of water (d)

एक संपीड़न हेलिकल स्प्रिंग के लिए, वाहल का सुधार कारक (Kw) (स्प्रिंग इंडेक्स के रूप में c=d/D के साथ) द्वारा दिया जाता है

For a compression helical spring, Wahl's correction factor (Kw) is given by (with c = d/D as spring index)

(a)
$$K_w = \frac{4c-2}{4c-4} + \frac{0.615}{c}$$

(b)
$$\text{Kw} = \frac{4c-1}{4c+1} + \frac{0.615}{c}$$

(e)
$$Kw = \frac{4c-1}{4c-4} + \frac{0.615}{c}$$

(d)
$$Kw = \frac{4c-2}{4c+4} + \frac{0.615}{c}$$

48. सरल आवर्त गति के लिए निम्न में से सही संबंध चुनें।

Pick the correct relationship from below for a simple harmonic motion.

 $\ddot{x} = -\omega^2 x$

(b) $\ddot{x} = -x^2 \omega$

 $x = \omega^2 \ddot{x}$ (c)

(d) $x^2 = \omega^2 \ddot{x}$

हाइड्रोलिक सिस्टम में — दर्शाने के लिए चिन्ह 🕂 का प्रयोग किया जाता है

The symbol is used in the hydraulic system to represent

(a) कूलर / Cooler (b) फिल्टर / Filter

हीटर / Heater (c)

(d) जलाशय / Reservoir

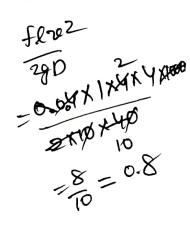
40 mm ट्यास के एक पाइप में पानी का वेग 4 m/s है। पाइप की लंबाई 1 m है. यदि डार्सी का घर्षण कारक, f = 0.04 है तो पानी के संदर्भ में घर्षण के कारण शीर्ष हानि m में व्यक्त क्या है?

The velocity of water in a pipe of 40 mm diameter is 4 m/s. The length of the pipe is 1 m. What is the head loss due to friction in terms of m of water if Darcy's friction factor, f = 0.04?

- 0.82 m पानी / of water (a)
- 3.26 m पानी / of water (b)
- 1.63 m पानी / of water (c)

1.32 m पानी / of water (d)

एनीमोमीटर का उपयोग मापने के लिए किया जाता है


Anemometer is used to measure

वेग / Velocity (a)

(b) तापमान / Temperature

श्यानता / Viscosity (c)

(d) घनत्व / Density

समान व्यास की क्षैतिज वृत्ताकार ट्यूब में तरल पदार्थ के प्रवाह के लिए रेनॉल्ड संख्या 1200 है। यदि ट्यूब का व्यास और तरल की गतिक श्यानता दोगुनी कर दी जाए और निकास पर निर्वहन समान रखा जाए तो ट्यूब में प्रवाह के लिए नई रेनॉल्ड संख्या होगी

The Reynold number for the flow of a fluid in horizontal circular tube of constant diameter is 1200. If the diameter of the tube and kinematic viscosity of the fluid are doubled and discharge at the exit is kept same then the new Reynolds number for the flow in the tube will be Q-C

(a) 4800

(b) 300

(c) 1200

(d) 600

B

12

2 - V2 TH 1480

जैसा कि चित्र में दिखाया गया है, $100~\mathrm{kg}$ का द्रव्यमान दो स्प्रिंग्स के बीच रखा गया है। सिस्टम के कंपन की प्राकृतिक आवृत्ति —— चक्र/सेकेंड है। As shown in the figure, a mass of 100 kg is held between two springs. The natural frequency of vibration of the system in cycles /second is 20kN/m100kg 20kN/m 0.5π (a) $5/\pi$ (b) $10/\pi$ (c) $20/\pi$ (d) एक संकेंद्रित भार P, स्पैन L के एक सरल समर्थित बीम पर समर्थन से L/3 की दूरी पर कार्य करता है। भार के अनुप्रयोग के बिंद् पर बंकन आघूर्ण ——— द्वारा दिया जाता है? A concentrated load P acts on a simply supported beam of span L at a distance L/3 from the support. The bending moment at the point of application of the load is given by 2PL/3(b) (a) PL/3 (d) 2PL/9 PL/9 (c)

55. डोरी की एक बड़ी गेंद की त्रिज्या 1 m है। स्ट्रिंग क्रॉस सेक्शन (अनुप्रस्थ काट) का व्यास 4 mm है तो गेंद ८५ में स्ट्रिंग की कुल लंबाई ज्ञात करें। गेंद के आयतन का 40% भाग खाली माना जा सकता है जो कि स्ट्रींग के लपेटने में आये रिक्त स्थान के कारण है।

A large ball of string has a radius of 1 m. Find the total length of the string in the ball if the string cross section diameter is 4 mm and 40% of the volume can be considered unfilled to account for the gaps in the wound string in the ball.

(a) 150 km

(b) 300 km

(c) 600 km

(d) 200 km

आर्डर 3 के वर्ग मैट्रिक्स A के लिए, |5A|=X|A| है, तो X= ि 3 For the square matrix A of order 3, |5A|=X|A|, then X=

(a) 15

(b) 125

(c) 243

(d) 25

S Teachingninja.in

यदि फाइटर जेट मैक 3 पर उड़ रहा है तो उसकी गति km/h में लगभग क्या है?


What is the approx. speed of the fighter jet in km/h if it is flying at mach 3?

(a) 411

1234 (b)

3704 (c)

(d) 11112

यदि किसी गैस का तापमान बढ़ता है और दबाव स्थिर रहता है, तो गैस के आयतन पर क्या प्रभाव पड़ता है?

If the temperature of a gas increases and the pressure remains constant, what happens to the volume of the gas?

- यह वही रहता है / It stays the same
- यह तापमान के अनुपातिक रूप से घटता है / It decreases proportionally to the temperature (b)
- यह तापमान के अनुपातिक रूप से बढ़ता है / It increases proportionally to the temperature (c)
- उपरोक्त में से कोई नहीं / None of the above (d)

विस्थापित द्रव के आयतन का गुरुत्व केन्द्र कहलाता है

The centre of gravity of the volume of the liquid displaced is called

- दबाव का केंद्र / Centre of pressure
- (b) उछाल का केंद्र / Centre of buoyancy

मेटासेंटर / Metacentre (c)

उपरोक्त में से कोई नहीं / None of the above (d)

 ω . पानी की एक बूंद के अंदर और बाहर के दबाव में कितना अंतर होता है? (सतह तनाव σ और d बूंद का

व्यास है)

What is the pressure difference between inside and outside of a droplet of water? (where σ is the surface tension and d is the diameter of droplet)

(a)

कोई द्रव "d" व्यास वाले पाइप में "V" वेग से प्रवेश करता है यदि निकास पर पाइप का व्यास घटकर 0.5d हो जाता है तो इसका वेग क्या होगा?

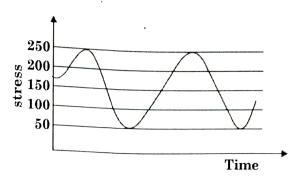
If a liquid enters a pipe of diameter "d" with velocity "V" then what will be its velocity at the exit if the diameter of the pipe reduces to 0.5d?

(a) 0.5V

2V(b)

(c) 4V

(d)


7 12 1 - 7 1 4 Va - 4 2

B

14

1480

, दिए गए उतार-चढ़ाव वाले श्रांति भार के लिए, तनाव आयाम और तनाव अनुपात का मान है For the given fluctuating fatigue load, the value of stress amplitude and stress ratio are

14 = 5

(a) 100 MPa और / and 5

- 250 MPa और / and 5 (b)
- 100 MPa और / and 0.20
- 250 MPa और / and 0.20 (d)

निम्नितिखित में से किस मामले में, अपरूपण बल आरेख का शुद्ध क्षेत्रफल शून्य है?

In which of the following cases, net area of the shear force diagram is zero?

- केंद्र में संकेंद्रित भार के साथ सरल समर्थित बीम / Simply supported beam with concentrated (a) load at center
- मुक्त सिरे पर संकेंद्रित भार के साथ कैंटिलीवर बीम / Cantilever beam with concentrated load (b) at free end
- समान रूप से वितरित भार के साथ सरल समर्थित बीम / Simply supported beam with (c) uniformly distributed load
- दोनों (a) और (c) / Both (a) and (c) (d)

पाइप लाइन में पानी का दबाव पारा युक्त साधारण मैनोमीटर के माध्यम से मापा जाता था। यदि मैनोमीटर की खुली ट्यूब में पारे का स्तर बाईं ट्यूब की तुलना में 180 mm अधिक है। बायीं नली में पानी की ऊँचाई 60 mm है। पाइप पर कार्य करने वाला स्थैतिक दबाव है

The pressure of water in a pipe line was measured by means of simple manometer containing mercury. The mercury level in the open tube is 180 mm higher than that of the left tube. The height of water in the left tube is 60 mm. The static pressure acting on the pipe is

23.43 KN/m² (a)

20.56 KN/m² (b)

35.25 KN/m² (c)

45.65 KN/m² (d)

10 RPM पर 200 W संचारित करने वाली मशीन का शाफ्ट व्यास 'd' निर्धारित करें। स्वीकार्य कार्यकारी प्रतिबल को 300 MPa मार्ने।

Determine the shaft diameter 'd' of a machine transmitting 200 W at 10 RPM. Assume allowable working stress as 300 MPa.

 $(64000/\pi^2)^{1/3}$ mm (a)

- $(32000/\pi^2)^{1/3}$ mm (b)

 $(16000/\pi^2)^{1/3}$ mm

TZ 300×11

PA+1960 = 13/960
PA=609 180×1349
1480 $(8000/\pi^2)^{1/3}$ mm

	,								
	(1)	ट्रेन के एक ही चरण में गति में भारी कर्म	1 [20 3	से अधिक] के दवारा संभव	충				
96.	10191	ge speed reductions [greater than 20] in	n one s	stage of a gear train are possible th	rough				
		स्पर गियरिंग / spur gearing	(b)	वर्म गियरिंग/worm gearing	nougn				
	(a)		(d)						
	(c)	बेवेल गियरिंग / bevel gearing	(u)	हेलिकल गियरिंग / helical gearing					
c#	10 n	n ट्यास का एक पेनस्टॉक पाइप 100 m	के दबा	व शीर्ष के तहत पानी ले जाता है। य	ਟਿ ਟੀਗਰ ਨ				
91.	मोटा	ई 9 mm है, तो MPa में पाइप की दीवार मे	तन्य	तनाव क्या है?	ाप पापार का				
		A penstock pipe of diameter 10m carries water under a pressure head of 100 m. If the wall							
	thicl	kness is 9 mm, what is the tensile stres	s in th	e pipe wall in MPa?					
	(a)	2725	(b)	545 - 0ch	-Pd				
	(c)	272.5	(d)	$ \begin{array}{ccc} 1090 & P = 20. \end{array} $	1				
ck	मिम.	हन चूक-प्रवाह एक ढलाई दोष है जो ———	<u></u> के	545 1090 P = Sg h कारण होता है?	200 X				
y 0.		run is a casting defect which occurs due		- +0	0000				
	(a)			nouring tomporative of the metal	XXAU				
		धातु का बहुत अधिक तापमान डालना / ver		The second of the motor	4000				
	(b)	पिघली हुई धातु की अपर्याप्त तरलता / ins			2000				
	(c)	तरत धातु द्वारा गैसों का अवशोषण / abso	rption	of gases by liquid metal					
	(d)	मोल्ड फ्लास्क का अनुचित संरेखण/impro	per al	ignment of mould flasks					
69.)	मीटि	क स्क शेट को MG v 1 5 cCb र र र र रें न	<u>م</u> د	_ 4					
<u></u>	 मीट्रिक स्क्रू थ्रेड को M6 × 1 5g6h के रूप में नामित किया गया है जहां 5g सिहण्णुता प्रतीक ——— की सिहण्णुता को नियंत्रित करता है 								
	The metric screw thread designated as M6 × 1 5g6h where 5g tolerance symbol controls the								
	tole	rance of) × 1 9	gon where og tolerance symbol co	ntrols the				
	(a)	पिच व्यास / Pitch diameter	(b)	मुख्य व्यास / Major diameter					
	(c)	पक्षपद व्यास / Minor diameter	(d)	उपरोक्त सभी / All of the above					
70									
70.	260	घटक के क्रांतिक खंड पर एक छोटा तत्व त	नाव की 	द्वि-अक्षीय स्थिति में है, जिसके दो प्र	ामुख तनाव				
	300	360 MPa और 140 MPa हैं। विरूपण ऊर्जा सिद्धांत के अनुसार अधिकतम कार्यकारी प्रतिबल होगा							
	$\mathbf{A} \mathbf{sn}$	A small element at the critical section of a component is in bi-axial state of stress with the two principal stresses being 360 MPa and 140 MPa. The maximum working stress according to distortion energy theory will be							
	•	ortion energy theory will be	MPa.	The maximum working stress acc	cording to				
	(a)	220 MPa	(b)	110 MPa					
	(c)	314 MPa	(d)	400 Mpa					
71.	CNO	े टे मशीन टूल में पॉइंट-ट-पॉइंट (P-T-P) चिजंब	тот						
	CNC मशीन टूल में पॉइंट-टू-पॉइंट (P-T-P) नियंत्रण — पर लागू होता है Point-to-point (P-T-P) control in CNC machine tool is applicable in case of								
	(a)	मिलिंग ऑपरेशन / Milling operation							
	(c)	ड्रिलिंग ऑपरेशन / Drilling operation	(b)	टर्निंग ऑपरेशन / Turning operation					
		· · · · · · · · · · · · · · · · · · ·	(d)	उपरोक्त सभी / All of the above					
В			16		1480				
					100				

72. एक नियमित शंकु में, आधार और तिरछी सतह के बीच का कोण 45 डिग्री है और आधार का व्यास 100 mm है। यदि ऐसे शंकु पर 5 की पिच के साथ एक हैलिक्स बनाना है तो इस शंकु में हेलिक्स के कितने चक्कर होंगे?

In a regular cone, the angle between base and slanting surface is 45 degrees and the base diameter is 100 mm. If a helix is to be built on such a cone with a pitch of 5. How many revolutions do the helix made in this cone?

(a) 14.1

(b) 18

(e) 10

(d) 20

स्लिप गेज की समतलता जांचने के लिए उपयुक्त उपकरण है

Appropriate instrument to check the flatness of slip gauge is

- (a) डायल सूचक / dial indicator
- (b) वायवीय तुलनित्र / pneumatic comparator
- ·(c) ऑप्टिकल इंटरफेरोमीटर / optical interferometer
- (d) उपकरण निर्माताओं का माइक्रोस्कोप प्रक्षेपण सुविधा के साथ / tool makers microscope with projection facility

एल्यूमीनियम मिश्रधातु में पायन (टैम्पर) वर्गीकरण T6 — को संदर्भित करता है

The temper classification T6 in aluminium alloys refers to

- (a) घोल गर्मी उपचारित / solution heat treated
- (b) घोल गर्मी से उपचारित और प्राकृतिक रूप से कालप्रभावित / solution heat treated and naturally aged
- (c) घोल गर्मी से उपचारित और कृत्रिम रूप से कालप्रभावित / solution heat treated and artificially aged
- (d) घोल गर्मी से उपचारित, ठंडा काम किया और स्वाभाविक रूप से कालप्रभावित / solution heat treated, cold worked and naturally aged

78. यदि सभी प्रसंस्करण उपकरण और मशीनें किसी उत्पाद के संचालन के क्रम के अनुसार व्यवस्थित की जाती हैं, तो प्लांट लेआउट को ———— कहा जाता है

If all the processing equipment and machines are arranged according to the sequence of operations of a product, the plant layout is known as

- (a) प्रक्रिया लेआउट / Process layout
- (b) लाइन लेआउट ! Line layout
- (c) निश्चित स्थिति लेआउट / Fixed position layout
- (d) संयोजन लेआउट / Combination layout

1480

वृत्त $2x^2 + 2y^2 - x = 0$ का केंद्र और त्रिज्या ज्ञात कीजिए

Find the centre and radius of the circle, $2x^2 + 2y^2 - x = 0$

- $\left(\frac{1}{4},\frac{1}{4}\right)$ केंद्र और $\frac{1}{4}$ त्रिज्या / Centre $\left(\frac{1}{4},\frac{1}{4}\right)$ and radius $\frac{1}{4}$
- (b) $\left(\frac{1}{4},0\right)$ केंद्र और $\frac{1}{4}$ त्रिज्या / Centre $\left(\frac{1}{4},0\right)$ and radius $\frac{1}{4}$
- (c) $\left(\frac{1}{2},0\right)$ केंद्र और $\frac{1}{4}$ त्रिज्या / Centre $\left(\frac{1}{2},0\right)$ and radius $\frac{1}{4}$
- $\left(\frac{1}{4},0\right)$ केंद्र और $\frac{1}{16}$ त्रिज्या / Centre $\left(\frac{1}{4},0\right)$ and radius $\frac{1}{16}$

गियरिंग के नियम के अनुसार एवं सामान्य नोटेशन में निम्नलिखित में से कौन सा सत्य है? According to the law of gearing, with usual notations, which of the following is true?

- (a) $\frac{N_1}{N_2} = \frac{D_1}{D_2} = \frac{Z_1}{Z_2}$
- (c) $\frac{N_1}{N_2} = \frac{D_2}{D_1} = \frac{Z_1}{Z_2}$

- (b) $\frac{N_2}{N_1} = \frac{D_1}{D_2} = \frac{Z_1}{Z_2}$
- (d) $\frac{N_2}{N_1} = \frac{D_1}{D_2} = \frac{Z_2}{Z_1}$

एक छेद और शाफ्ट असेंबली पर आयाम नीचे दिए गए हैं

On a hole and shaft assembly the dimensions are as given below Hote 35 10 530

शाफ्ट / Shaft : $\phi 60^{rac{-0.010}{-0.029}}$, छेद / Hole : $\phi 60^{rac{-0.035}{-0.000}}$

किस प्रकार का फिट प्राप्त होता है?

What is the type of fit obtained?

- क्लीयरेंस फिट / Clearance fit (a)
- संक्रमण फिट / Transition fit (b)
- हस्तक्षेप फिट / Interference fit
- श्रिंक फिट / Shrink fit (d)

सभी दिशाओं में समान प्रत्यास्थं गुण वाले पदार्थ कहलाते हैं

The materials having same elastic properties in all directions are called

- आदर्श सामग्री / ideal materials
- समान सामग्री / uniform materials (b)
- आइसोट्रोपिक संगमग्री / isotropic materials (d)
 - लोचदार सामग्री / elastic materials

85 °C तापमान वाले $4~\mathrm{kg}$ गर्म पानी को $22~\mathrm{^{\circ}C}$ पर रखे $2~\mathrm{kg}$ ठंडे पानी में मिलाया जाता है। मिश्रित जल का अंतिंम तापमान क्या है?

The 4 kg of hot water having the temperature of 85 °C is mixed with 2 kg of cold water at 22 °C. What is the final temperature of the mixed water?

(a) 58 °C

(b) 47 °C

39 °C (c)

64 °C (d)

24 485 + 19 22° 1702 64 - 1834 T 37192 64 - 1834 T

Teachingninja.in

B