

ISRO VSSC Tech Asst. (Mechanical)

Visit - teachingninja.in

भारत सरकार/ Government of India अंतरिक्ष विभाग/ Department of Space

विक्रम साराआई अंतरिक्ष केंद्र/ VIKRAM SARABHAI SPACE CENTRE

तिरुवनंतपुरुम। Thiruvananthapuram - 695 022

तकनीकी सहायक - यांत्रिक (विज्ञा.सं. 323) के पद के चयन हेतु लिखित परीक्षा WRITTEN TEST FOR SELECTION TO THE POST OF TECHNICAL ASSISTANT-MECHANICAL (ADVT. NO. 323)

पद सं. 1480 / Post No. 1480

सर्वाधिक अंक/Maximum Marks : 80 अभ्यर्थी का नाम/Name of the candidate : तिथि/Dale: 30.07.2023 समय/Time. 90 ਸਿਜਟ/ 90 minutes

अनुक्रमांक सं/Roll no.

अभ्यर्थियों के लिए अनुदेश /Instructions to the Candidates

 आपके द्वारा वेब आवेदन में प्रस्तुत किए गए ऑन-लाइन डेटा के आधार पर आपको लिखित परीक्षा के लिए आमंत्रित किया गया है। यदि आपने वेब में किसी सूचना की गलत प्रविष्टि की है या विज्ञापन के अनुसार अपेक्षित योग्यता नहीं रखते हैं तो आपकी अभ्यर्थिता अस्वीकृत कर दी जाएगी।

You have been called for the written test based on the online data furnished by you in the web application.

If you have wrongly entered in the web any information or you do not possess the required qualification as per our advertisement, your candidature will be rejected.

- 2. प्रश्न-पत्र, 80 प्रश्नों से युक्त प्रश्न-पुस्तिका के रूप में है और परीक्षा की अवधि 90 मिनट है। The Question paper is in the form of Question Booklet with 80 questions and the duration of the test is 90 minutes.
- चार विकल्पों सहित वस्तुनिष्ठ प्रकार के प्रश्न होंगे जिनमें से सिर्फ एक असंदिग्ध रूप से सही होगा।
 The questions will be objective type with four options out of which only one will be unambiguously correct.
- प्रत्येक प्रश्न के लिए 01 अंक होंगे और प्रत्येक गलत उत्तर के लिए 0.33 अंक काटा जाएगा।
 Each question carries 01 mark and 0.33 marks will be deducted for each wrong answer.

कृपया दूसरा पृष्ठ देखें/P.T.O.

- प्रश्नों के उत्तर देने के लिए कार्बन विलेपित प्रति सहित अलग ओएमआर उत्तर-पुस्तिका दी जाएगी।
 A separate OMR answer sheet with carbon coated copy will be provided to mark the answer options.
- आपको नीली/काली स्याही के बॉल पाइंट पेन से ओएमआर उत्तर- पुस्तिका में संबंधित ऑवल को अंकित कर सही उत्तर का चयन करना है।

You have to select the right answer by marking the corresponding oval on the OMR answer sheet by blue/black ball point pen.

- एक प्रश्न के लिए अनेक उत्तर देने पर गलत उत्तर माना जाएगा।
 Multiple answers for a question will be regarded as wrong answer.
- अपर दाएँ कोने में मुदित प्रश्न-पुस्तिका के कोड को ओएमआर उत्तर-पुस्तिका में दिए गए स्थान पर लिखना चाहिए।

Question booklet code printed on the right top corner should be written in the OMR answer sheet in the space provided.

- प्रश्न-पुस्तिका में आपका नाम तथा अनुक्रमांक सही लिखें।
 Enter your Name and Roll Number correctly in the question booklet.
- ओएमआर उत्तर-पुस्तिका में सभी प्रविष्टियां नीली/काली स्याही के बॉल पाइंटपेन से ही की जानी चाहिए।
 All entries in the OMR answer sheet should be with blue/black ball point pen only.
- परीक्षा हॉल में निरीक्षक की उपस्थिति में ही आपको हॉल-टिकट पर हस्ताक्षर करना चाहिए।
 You should sign the hall ticket only in the presence of the Invigilator in the examination hall.
- 12. लिखित परीक्षा चलने वाले हॉल के अंदर कंप्यूटर, कालकुलेटर, मोबाइल फोन, स्मार्ट वाचेस तथा अन्य इलेक्ट्रॉनिक सामान, पाठ्य-पुस्तकें, नोट आदि लाने की अनुमति नहीं दी जाएगी।

 Computers, calculators, mobile phones, smart watches and other electronic gadgets, text books, notes etc., will not be allowed inside the written test hall.
- 13. परीक्षा पूर्ण होने पर. ओएमआर उत्तर-पुस्तिका को ऊपर के छेदन चिहन से फाई और मूल ओएमआर उत्तर-पुस्तिका निरीक्षक को साँपे तथा दूसरी प्रति आपके पास रखें।

 On completion of the test, tear the OMR answer sheet along the perforation mark at the top and hand over the original OMR answer sheet to the invigilator and retain the duplicate copy with you.
- 14. प्रश्न-पुस्तिका अभ्यर्थी अपने पास रख सकते हैं। The question booklet can be retained by the candidates.
- परीक्षा के प्रथम घंटे के दौरान अञ्चार्थियों को परीक्षा हॉल छोड़ने की अनुमित नहीं है।
 Candidates are not permitted to leave the examination hall during the first hour of the examination.

तकनीकी सहायक (मैकेनिकल) / Technical Assistant (Mechanical)

 यदि rim प्रकार के फ्लाईव्हील के औसत त्रिज्या को आधा किया जाए, तो उसका भण्डारण ऊर्जा, समान गति पर मूल फ्लाईव्हील के ———— है।

If the mean radius of rim type flywheel is halved, its stored energy is — — of the original flywheel at the same speed.

- (a) 1/4
- (c) द्गुना / 2 times

(b) 1/2

COVEDNMENT OF INDI

- (d) समान / same
- 2. निम्नलिखित में से कौन से वेल्डिंग तकनीक को वेक्यूम पर्यावरण की आवश्यकता है?

Which one of the following welding techniques require vacuum environment?

- (a) पराध्वनिक बेल्डिंग / ultrasonic welding
- (b) लेज़र वेल्डिंग / laser welding
- (c) प्लाज़्मा वृत्तांश वेल्डिंग / plasma arc welding
- (d) एलेक्ट्रान प्रकाश वेल्डिंग / electron beam welding
- निम्नलिखित में से किस बीम में, सहायक पर शून्य बंकन आधूर्ण होता है?

Which of the following beam has zero bending moment at the support?

- (a) कैन्टिलिवर बीम / cantilever beam
- (b) सरलता से सहारा दिया गया बीम / simply supported beam
- (c) स्थाई बीम / fixed beam
- (d) टिकाया गया बीम / propped beam
- 4. 2 m/s के वेग के तरल बहाव, 0.05 m की त्रिज्या का पाइप, तरल की सघनता 1000 kg/m³ है और 1×10⁻⁶m²/s का शुद्धगतिक विपविपाहट के लिए रेनॉल्ड संख्या क्या है?

What is the Reynolds number for a fluid flow with a velocity of 2 m/s, a pipe radius of 0.05 m, fluid density of 1000 kg/m^3 and a kinematic viscosity of $1 \times 10^{-6} m^2 / s$?

(a) 200

(b) 2000

(c) 20,000

- (d) 2,00,000
- К_а और К_b चालकता की, a और b सामग्री से बनी मिश्रित स्लैब जिसका समान मोटापा और अनुप्रस्थ काट क्षेत्र है -उसकी चालकता है

The conductivity of a composite slab made of material a and b having conductivity K_a and K_b with equal thickness and cross-sectional area is

(a) $K_a + K_b$

(b) $K_a K_b$

(c) $(K_a + K_b)/K_aK_b$

(d) $2K_aK_b/(K_a+K_b)$

77	6.	एक खोर	बले शैफ्ट 20 ।	nm बाहरी व्यास	और 10 mm वे	; अन्द	र के व्यास	के लिए जर	इत्व के ध्रुवीय	। क्षण का, समान	सामग्री
	83	के. व्यास	20 mm 31	व शफ्ट का अनुपा	u 6.	accorate o		-C -utor	diameter	20 mm and	inner
	33	The ra	tio of polar	moment of	त ह- inertia for a aft of 20 mm	diam	eter of	the same	material i	s	- 3
	- 3	diamet	er of 10 mn	to a some sn	air oi -	(b)	15/16	0.			
		(a) 1/	16			(d)	0.5				
	(c) 1						22 V 91	३ ज्याकाः	रपयोग का अल्ल	00
7	. ų	एक एन्ड चक्की कटर, जिसका व्यास 15 mm है, उसके काटने की गति 180 m/min है, उसका उपयोग कर अल्युमिनियम सामग्री को पीसा जाता है, तो rps में तकली की गति है करीबन									
	V	While milling of aluminium material by using the million of aluminiu									
	(a					(b) (d)	32				
	(c		22			(ω)	-0-				
			(VE) = VAV = -		५ - ि चित्रवत स	या है र	1				
8.	लो	लोहा कार्बन चित्र में, गलनक्रातिक पर कार्बन की प्रतिशत क्या है? What is the percentage of Carbon at the Eutectic point in Iron Carbon diagram?									
	W	hat is	the percent	age of Carbo	n at the Euce	(b)	3.40				
	(a)					(d)	3.04				
	(¢)	4.30)			(T.)					
9.	तरव	न पदार्थ	के शुद्धगतिक	चिपचिपाहट का	आयाम क्या है?	a.	2				
	W	hat is c	limension (of kinematic	viscosity of a	Hulu	L^2T^{-1}				
	(a)					(0)	$ML^{-2}T$				
	(G)		$^{-1}T^{-1}$			(d)	ML I				
							त के लिए	केन्द्रीय को	ार की आवर	यकता नहीं हैं?	
10.	निम्न	निम्नलिखित में से कौन सी ढ़लाई प्रक्रिया के लिए, पाइप के उत्पादन के लिए केन्द्रीय कोर की आवश्यकता नहीं हैं?									
	Wh	Which of the following casting processes do not require constant									
	(a)	बालू	ढ़लाई प्रक्रिया	sand castin	g process						
	(b)	डई ढ़	लाई प्रक्रिया /	die casting p	rocess						
	(0)	o) अपकेन्द्री ढ़लाई प्रक्रिया / centrifugal casting process									
	(d)	63 - Lineartment casting process									
11.	किसी				क समय अधिकत		को —		द्वारा वि	वभाजित करके ^प	ाया जाता
	है।	है।									
	Tensile strength of a material is obtained by dividing the maximum load during the test by the										
	(a)										
	(b)	b) मौलिक अनुप्रस्थ-काट क्षेत्र / original cross-sectional area									
	(c)	e) (a) और (b) का औसत / average of (a) and (b)									
	(d)	(d) फ्रैक्चर के बाद न्यूनतम क्षेत्र / minimum area after fracture									
£					4	Ni Ka					1480
	- 0										

E

w	347	
5419	12.	Z
27		I

यदि dQ/T > 0 का चक्रीय अभिन्न अंग है, तो चक्र है If cyclic integral of dQ/T > 0, the cycle is

- (a) उल्टा/वापस किया जा सकता है / reversible
- (c) असंभव / impossible

- (b) उल्टा/वापस किया नहीं जा सकता / irreversible
- (d) उपरोक्त में से कोई नहीं / none of the above

13. हुक का कानून सही है

Hooke's law holds good up to

(a) पराभव तक / yield point

- (b) समानुपातीकता तक / limit of proportionality
- (c) टूटने की बिंदु तक / breaking point
- (d) लचीलेपन की सीमा तक / elastic limit

14. इनमें से किसकी इकाई नहीं है?

Which of the following has no unit?

- (a) शुद्धगतिक चिपचिपाहट / kinematic viscosity (b)
 -) सतही तनाव/दबाव / surface tension

- (c) देर मापांक / bulk modulus
- (d) तनाव/खिंचाव / strain

15. समीकरण n = 0.5 के टेयलर के उपकरण समीकरण का उपयोग कर, यदि काटने की गति को दुगुना कर दिया जाए, मूल उपकरण जीवन का नये उपकरण जीवन का अनुपात है

Using the Taylor's tool life equation with exponent n = 0.5, if the cutting speed is doubled, the ratio of original tool life to new tool life is

(a) 2

(b) 4

(c) 1

(d) 0.5

16. एक 360 mm व्यास की पाइप (नल) में पानी का वेग 10 m/s है। पाइप की लम्बाई 900 m है। यदि f = 0.009 और $g = 10 m / s^2$ है तो घर्षण के कारण मीटर में पानी का हैड लॉस कितना है?

The velocity of water in a pipe of 360 mm diameter is 10 m/s. The length of the pipe is 900 m. What is the head loss due to friction in terms of meters of water if f = 0.009 and $g = 10m/s^2$?

- (a) 450 m पानी / 450 m of water
- (b) 900 m पानी / 900 m of water
- (c) 112.5 m पानी / 112.5 m of water
- (d) 225 m पानी / 225 m of water

17. स्टीफन बोल्ट्ज़मैन स्थिर की इकाई क्या है?

What is the unit of Stefan Boltzman constant?

(a) $\frac{W}{mk^4}$

(b) $\frac{W}{m^2k^4}$

(c) $\frac{Wm^2}{b^4}$

(d) आयामहीन / dimensionless

विशेषतः वेन्चुरीमीटर के निकासी का गुणांक होता है

Typically, the coefficient of discharge of a venturimeter lies between

- (a) 0.75 से 0.80 के बीच / 0.75 to 0.80
- (b) 0.81 से 0.85 के बीच / 0.81 to 0.85
- (c) 0.86 से 0.90 के बीच / 0.86 to 0.90
- (d) 0.95 से 1 के बीच / 0.95 to 1

19. यदि m बेल्ट की द्रव्यमान/इकाई लम्बाई है, और T बेल्ट में अधिकतम तनाव है, तो अधिकतम विद्युत संचारण के लिए If m is the mass/unit length of belt and T is the maximum tension in the belt, for $\max_{u \in T} f(u)$

power transmission, velocity of the belt is

(a)
$$\sqrt{(T/m)}$$

(b)
$$\sqrt{(T/4m)}$$

(c)
$$\sqrt{(T/2m)}$$

(d)
$$\sqrt{(T/3m)}$$

उपकरण का जीवनकाल —

The life of an equipment will be shortened in the case of

- भविष्यसूचक रखरखाव / Predictive maintenance
- निवारक रखरखाव / Preventive maintenance
- प्रतिक्रिय रखरखाव / Reactive maintenance (c)
- निरूपण रखरखाव / Diagnostic maintenance (d)

एक कुण्डली आकार का स्प्रिंग, जिसपर सम्पीड्य बल डाला गया है उसमें कुण्डलियों की कुल संख्या यदि N, है और यदि उनके छोरों को वर्गीकृत और पीसा जाए, तो सक्रिय घुमाओं की संख्या है

If N_t is the total number of coils in a helical spring subjected to compressive force and if the ends are squared and ground, then the number of active turns is

(a)
$$N_t$$

(b)
$$N_t - \frac{1}{2}$$

(c)
$$N_t - 2$$

(d)
$$N_t - 1$$

एक अधिचक्रिक गियर रेलगाडी के वलयाकार पहिए में 80 दाँत हैं। यदि प्लैनेट (ग्रह) पहिए में 16 दाँत हैं, तो सूर्य पहिए में 22. - दाँत होंगे।

Annular wheel of an epicyclic gear train has 80 teeth. If the planet wheel has 16 teeth, the sun — teeth. wheel has -

23. $\int \frac{2x}{x^2+1} dx$ पता लगाइए

Find
$$\int \frac{2x}{x^2+1} dx$$

(a)
$$\frac{-1}{(x^2+1)^2} + C$$

(b)
$$\tan^{-1} x + C$$

(c)
$$\log(x^2+1)+C$$

(d)
$$\log(\tan^{-1}x) + C$$

24. समय के सापेक्ष एक वस्तु की स्थिति का आलेख को चित्र में दिखाया गया है The plot of the position of an object with respect to time is shown in the figure

वस्तु का वेग Vs समय प्लॉट है / The velocity Vs time plot of the object is

25. लचीलेपन के दायरे में एक वस्तु के ऊर्ज़ा सोखने की क्षमता को कहते हैं

Ability of a material to absorb energy in the elastic range is known as

लचीलापन / resilience

कडापन / stiffness (b)

(c) सुघट्यता / plasticity

- सख्तपन / hardness (d)
- एक भारी धातुई कन्टैनर दरवाजा (2 m चौडा और 3 m ऊँचाई) जिस में ऊँचाई की दिशा में हिन्जेस दिये गए हैं, उस पर 26. 90 Nm का विरोधी ऐंठन दिया गया है। दरवाजे को खोलने में आवश्यक न्यूनतम बल क्या है?

The resistant torque of 90 Nm is offered by a heavy metallic container door (2 m width and 3 m height) with hinges provided along the height. What is the minimum force required to open the door?

30 N (a)

(b) 90 N

45 N (c)

- 15 N (d)
- गर्म करने के कारण यदि एक वस्तु आजादी से फैलता है, तो उसमें पैदा होगा

If a material expands freely due to heating it will develop

- (a) ऊष्मीय दबाव / thermal stress
- तन्यता द्वाव / tensile stress (b)
- सम्पीड्य दबाव / compressive stress
- दबाव रहित / no stress (d)
- दी गई सामग्री के लिए बक्लिंग भार, आधारित होगा 28.

The buckling load for a given material depends on

- (a) पतलेपन का अनुपात, दृढ़ता का मापांक और अनुप्रस्थ-काट का क्षेत्र / slenderness ratio, modulus of rigidity and area of cross-section
- पॉइस्सन का अनुपात, अनुप्रस्थ-काट का क्षेत्र और लचीलेपन का मापांक / Poisson's ratio, area of cross section and modulus of elasticity
- पतलेपन का अनुपात, फैलाव का गुणांक और लचीलेपन का मापांक / slenderness ratio, coefficient of (c) expansion and modulus of elasticity
- पतलेपन का अनुपात, अनुप्रस्थ-काट का क्षेत्र और लचीलेपन का मापांक / slenderness ratio, area of crosssection and modulus of elasticity

29. निम्न दिए गए चित्र से, बेलनाकारिता विशिष्टता क्या है?
In the following figure, what is the cylindricity specification

- (a) 0.004
- (c) 0.012

- (b) 0.006
- (d) 0.08
- 30. शंकुरूपी पिवट के लिए, एक जैसी घिसाई का घर्षण ऐंठन, एक जैसे दबाव के घर्षण ऐंठन के x बार है, जहाँ x है

 For conical pivots, the friction torque with uniform wear is x times the friction torque with uniform pressure, where x is,
 - (a) 2/3

(b) 3/2

(c) 4/3

- (d) 3/4
- 31. यदि $\omega / \omega_n = \sqrt{2}$ है, जहाँ $\omega = 3$ तेजन की आवृति और ω_n प्रणाली की प्राकृतिक आवृति है, तो कम्पन की संचरणशीलता होगी

If $\omega/\omega_n=\sqrt{2}$, where $\omega=$ frequency of excitation, and ω_n is the natural frequency of system, then transmissibility of vibration will be

(a) 1

(b) 0.5

(c) 2

- (d) 1/4
- 32. कौन सी ISO 9000 श्रृंखला, विकास और डिज़ाइन के लिए शर्तों को शामिल करती है?

Which of the ISO 9000 series covers clauses for design and development?

(a) ISO 9001

(b) ISO 9002

(c) ISO 9003

- (d) ISO 9004
- 33. एक गैस की टंकी अंदरूनी मोटापा 't' और व्यास 'D' के पतले बेलनाकारी शेल से बनी है। t मोटापे के अर्धगोलाकारी गुम्बदों को बट्ट वेल्ड के ज़रिए बेलनाकारी शेल से वेल्ड किया जाता है। स्वीकार्य अन्दरूनी दबाव है (अनुमत तनन दबाव σ और वेल्ड कुशलता है η)

A gas tank is made of a thin cylindrical shell of inner diameter D and thickness t. Hemispherical domes of thickness t is welded to the cylindrical shell by means of butt weld. The allowable internal pressure is (Permissible tensile stress is σ and weld efficiency is η)

(a) 4017/D

(b) $2\sigma t\eta /D$

(c) $4\sigma t\eta/D^2$

(d) $2\sigma t\eta/D^2$

- 13.5 kg के द्रव्यमान के एक अल्युमिनियम ब्लॉक को एक तार से लटकाया जाता है और एक 0.8 के सापेक्ष घनत्व के तेल की टंकी में डुबोया जाता है। अल्युमिनियम की सापेक्ष घनत्व यदि 2.7 है, तो तार में तनाव होगा (g = 10 m/s²) A block of aluminium having mass of 13.5 kg is suspended by a wire and lowered until submerged into a tank containing oil of relative density 0.8. Taking the relative density of aluminium as 2.7, the tension in the wire will be $(g = 10 \text{ m/s}^2)$

 - 800 N (c)

- 120 N
- 35. एक टर्बाइन की 500 विशिष्ट गति सूचित करती है कि टर्बाइन है

A specific speed of 500 of a turbine indicates that the turbine is

- (a) पेल्टन पहिया / Pelton wheel
- कप्लन / Kaplan (c)

- फ्रान्सिस / Francis (b)
- क्रॉस फ्लो / Cross flow (d)

36. एक रुद्धोष्म सीमा वह है, जो -

An adiabatic boundary is one which

- (a) ऊष्पा स्थानांतरित होने देता है / allows heat transfer
- (b) ऊष्मा तबादला नहीं होने देता है / prevents heat transfer
- (c) द्रव्यमान का तबादला होने देता है / allows mass transfer
- (d) कार्य तबादला रोकता है / prevents work transfer
- 37. यदि $y = a^x$ है, तो $\frac{dy}{dx} =$

$$y = a^x$$
, then $\frac{dy}{dx} =$

(a) a log a

(b) x log a

x ax-1 (c)

- (d) a log x
- नीचे दिया गए चित्र दो अलग अलग उपकरणों A और B के साथ एक घटक के एक विशिष्ट आयाम के लिए किए गए 38. 6 माप दिखाते है। कौन सा कथन सही है?

The figures given below shows 6 measurements made for a particular dimension of a component with two different instruments A and B. Which one is the correct statement?

- (a) उपकरण B, उपकरण A से अधिक सही है / Instrument B is more accurate than instrument A
- उपकरण B, उपकरण A से कम सही है / Instrument B is less accurate than instrument A (b)
- उपकरण B, उपकरण A से अधिक सुस्पष्ट है / Instrument B is more precise than instrument A (c)
- उपकरण A और B, दोनों समान रूप से यथार्थ और सुस्पष्ट हैं / Instrument A and B are equally accurate (d) and precise

Find the determinant of the matrix $\begin{bmatrix} 2 & 6 & 2 \\ 1 & 2 & 1 \\ 5 & 3 & 5 \end{bmatrix}$

(a) 28

(b) -28

(c) 14

- (d) 0
- 40. मौलिक छिद्र प्रणाली के अनुसार, दो परस्पर मिलनेवाले भागों (शैफ्ट और छिद्र) के आयाम हैं ————। The dimensions of two mating parts (shaft & hole) according to a basic hole system are

छिद्र / hole : ∮48^{0/+0.04}

शैफ्ट / shaft : \$\phi 48^{-0.04/-0.06}

इस जमावडे में भत्ता कितना है?

What is the allowance in this assembly?

(a) 0.10 mm

(b) 0.06 mm

(c) 0.02 mm

(d) 0.04 mm

A rigid bracket is fixed to a rigid steel structure by means of four identical bolts without any preload as shown in figure. For the applied eccentric load P, the maximum direct tensile stress developed in the bolt is

(a) $\frac{PeL_2}{2\left(L_1^2 + L_2^2\right)}$

(b) $\frac{PeL_1}{(L^2 + L^2)}$

(c) $\frac{PeL_1}{2(L_1^2 + L_2^2)}$

(d) $\frac{PeL_2}{(L_1^2 + L_2^2)}$

42.	एक	काट्टर जोड का उपयोग, दो — दण्डं								
	A cotter joint is used to connect two ———— rods.									
	(a) सह-अक्षीय / co-axial			rods.						
	(c)	समानान्तर / parallel	(p)	अभिलम्ब / perpendicular						
	(-)	SOUDING TO SEAR HITCHES	(d)	कुण्डलित / convoluted						
43.	300	मामा मह का गराचा युवाय कितका सूचित करता	₹?	न पर, बैरोमीटर 700 mm Hg दिखाता है। इस स्थान पर						
	The standard atmospheric pressure is 760 mm Hg. At a specific location, the barometer reads 700 mm Hg. At this place, what does an absolute pressure of 380 mm Hg corresponds to?									
	(a)	320 mm Hg शून्यता / vacuum	(b)	380 mm Hg शून्यता / vacuum						
	(c)	60 mm Hg श्र्यता / vacuum	(d)	1080 mm Hg गेज / gauge						
44.		षण बनाने में उपयोगी सबसे सामान्य तरीका है								
	The	The most commonly used method of making jewellery is								
	(a)	बालू दलाई / sand casting	(b)	डई दलाई / die casting						
	(c)	अपकेन्द्री ढ़लाई / centrifugal casting	(d)	निवेश दलाई / investment casting						
45.	सुरक्ष	। घटक कोके अनुपात जैसे पार्रि	रभाषित र्	केया जाता है।						
	Factor of safety is defined as the ratio of									
	(a) अंतिम तनाव से कार्यरत तनाव / ultimate stress to working stress									
U	(b) कार्यरत तनाव से अंतिम तनाव / working stress to ultimate stress									
≅ 86	(c) टूटने के तनाव से अंतिम तनाव / breaking stress to ultimate stress									
	(d) अंतिम तनाव से दूरने का तनाव / ultimate stress to breaking stress									
46.	व्यास D और जेट व्यास d के पेल्टन व्हील टर्बाइन का जेट अनुपात (m) है -									
	Jet	Jet ratio (m) of Pelton wheel turbine of dia D and jet dia d is								
	(a)	m = 2d/D	(b)	m = D/d						
	(c)	m = D/2d	(d)	m = Dd/2						
47.	एक व	एक समतापी प्रक्रिया नयंन्त्रित की जाती है								
	An isothermal process is governed by									
	(a)	बॉयल का कानून / Boyle's law	(b)	चार्लस का कानून / Charle's law						
	(c)	गै-लुस्साक का कानून / Gay-Lussac's law	(d)	अवगाड्रो का कानून / Avogadro's law						

11

E

		Lores (Chings) South No. (Arch	
4	कार्य स्टिन गज स मापा गया	κς 1 3000 με e, til	करण के मापन में होता है। 2.0 गेज फैक्टर के वेरोध में क्या परिवर्तन है?
	togt str	ain gauge is used t	or measuring the elongation. If the measured in gauge of gauge factor of 2.0, what is the
	(a) 50 Ω	(b)	60 Ω
	(c) 0.18 Ω	(d)	0.72 Ω
49	. आधार पर अर्धवृत्त के जड़त्व और केन्द्रक	काक्षण है -	
43	The Moment of Inertia and cen	troid of the semici	rcle about the base is
	D4 /109 AR/3#	(b)	$\pi D^4 / 64, \ 2R / 3\pi$
	 (a) πD*/128, 4R/3π (c) πD*/128, 2R/3π 	(d)	$\pi D^4 / 64, \ 4R / 3\pi$
50.	भारी और अनियमित आकारी कार्य को प्रा The chuck used for setting up of	रंभ करने के लिए उपयोग heavy and irregu	ी चक होनी चाहिए- lar shaped work should be
	(a) चार जब्डा मुक्त चक / four jaw i	ndependent chuck	
	(b) तीन जबडा सार्विक चक / three ja		
	(c) चुम्बकीय चक / magnetic chuc		
	(d) ड्रिल चक / drill chuck		
51.	o s मे बटकर 0 501 हो जाता है।	दिए गए दबाव दावर न	बढ़ाकर 3.5 MPa कर दिया जाए, तो तरल की संबंध र तरल का औसत ढ़ेर मापांक क्या है?
	A 500 - 400 A	nass of liquid at density of liquid	a temperature of 303 K is increased from increases from 0.5 to 0.501. What is the
	(a) 700 MPa	(b)	600 MPa
	(c) 500 MPa	(d)	250 MPa
52.	किसी सामग्री की संघात शक्ति उसके ——	की सूचक	है।
(0	The impact strength of a material	is an index of its	
()	(a) कडापन / toughness		

Teachingninja.in

52.

(b)

(d)

तन्यता शक्ति / tensile strength

कठोरता / hardness

ठंडे कार्य करने की क्षमता / capability of being cold worked

53. अवमन्दित कंपन की आवृत्ति है

The frequency of damped vibration is

- (a) प्राकृतिक आवृत्ति के बराबर / equal to natural frequency
- (b) प्राकृतिक आवृत्ति से कम / less than natural frequency
- (c) प्राकृतिक आवृत्ति से अधिक / more than natural frequency
- (d) प्राकृतिक आवृत्ति के दुगुना / double the natural frequency

54. $x^2 + y^2 - 4x - 8y - 45 = 0$ वृत्त के त्रिज्या और केन्द्र पता लगाइए-Find the centre and radius of the circle $x^2 + y^2 - 4x - 8y - 45 = 0$

- (a) केन्द्र (2, 4) और त्रिज्या 5 / Centre (2, 4) and radius 5
- (b) केन्द्र (4, 8) और त्रिज्या 65 / Centre (4, 8) and radius 65
- (c) केन्द्र (4, 8) और त्रिज्या √45 / Centre (4, 8) and radius √45
- (d) केन्द्र (2, 4) और त्रिज्या √65 / Centre (2, 4) and radius √65
- 55. एक काम को समाप्त करने में दिया गया मानक समय, उत्पादन के लिए प्रति टुकड़ा 10 मिनट है और सेट करने का समय 50 मिनट है। एक ऑपरेटर 50 काम, 8 घंटे और 20 मिनटों में इकट्ठा करता है। इसमें उसकी मशीन को सेट करने का समय भी शामिल है। आपरेटर की कार्यकुशलता का हिसाब लगाइए-

The standard time allowed for a job is 10 minutes per piece for production and 50 minutes as setting time. An operator assembles 50 jobs in 8 hours and 20 minutes. This time includes the time for setting his machine. Calculate the operator's efficiency

(a) 100 %

(b) 110 %

(c) 90.9 %

(d) 90 %

56. यदि दो घातु A और B के लचीलेपन का मापांक क्रमश: 71000 N/mm² और 207000 N/mm² है। यदि तन्यता प्रारूप में, ऊपर दिए गए सामग्रियों की समान लम्बाई और अ्प्रस्थ काट को उनके लचीलेपन सीमा के अन्दर, समान भार के अन्दर परीक्षित किया जाए, तो निम्नलिखित कथनों में से कौन-सा सही है?

If the modulus of elasticity of two metals A and B are 71000 N/mm² and 207000 N/mm² respectively. If tensile specimens having same cross section and length from above materials are tested under same load within their elastic limit, which of the given statements is correct?

- (a) धातु A नमूने का दीर्घीकरण, धातु B नमूने के दीर्घीकरण से अधिक है / Elongation of metal A specimen is more than the elongation of metal Bispecimen
- (b) धातु B नमूने का दीर्घीकरण, धातु A नमूने के दीर्घीकरण से अधिक है / Elongation of metal/B specimen is more than the elongation of metal Alspecimen
- (c) धातु A नमूने में, धातु B नमूने से अधिक तन्यता दबाव है / Tensile stress in metal A specimen is more than the tensile stress in metal B specimen
- (d) धातु B नमूने में, धातु A नमूने से अधिक तन्यता दबाव ह / Tensile stress in metal B specimen is more than the tensile stress in metal A specimen

57. निम्न दिए गए चित्र में, आयाम X के लिए क्या सहाता होगी

In the following figure what will be the tolerance for the dimension X

- (a) 70^{+0.1/-0.5}
- (c) 70^{+0.6/+0.2}

- (b) 70^{-0.2}/-0.6
- (d) 70^{-0.1/-0.5}

58. किसी वस्तु की माँग, प्रति वर्ष 10,000 इकाइयाँ है और इकाई की कीमत Rs. 100 है। एक इकाई के लिए सम्पत्तो सूची ब्याज की कीमत 10% है और भण्डारण दाम 15% है। प्रति आर्डर (माँग) सेट अप दाम Rs. 1,250 है। इष्टतम आर्डर मात्रा की गणना करे।

The demand for an item is 10,000 units per annum and the unit cost is Rs. 100. For a unit, inventory interest cost is 10% and storage cost is 15%. Set up cost is Rs. 1,250 per order. Calculate the optimal order quantity.

(a) 2000

(b) 1000

(c) 800

(d) 1250

तय घर्षण सतहों की

59. एक बहु प्लेट क्लच में, चालक और जो अन्य सदस्य दोनों पर, प्लेटों की कुल संख्या यदि 'n' है, तो सक्रिय घर्षण सतहाँ की संख्या होगी

In a multiple plate clutch, if n is the total number of plates both on the driving and driven members, the number of active friction surfaces will be

(a) 2n

(b) n − 1

(c) n

(d) 2(n-1)

60. एक 0.4 N/mm के कडेपन के स्प्रिंग से 1 kg द्रव्यमान को जोडा गया है, इस प्रणाली का क्रांतिक अवमंदन गुणांक है Critical damping coefficient of a system with a mass of 1 kg attached to a spring with stiffness of 0.4 N/mm is

(a) 40

(b) 30

(c) 60

(d) इनमें से कोई नहीं / none of these

w

	61.	निम्नलिखित में से कौन-सा कोड, मेरिक —		दी गई विशिष्ट निवेश मूल्यों को CNC मशीन उपकरण में						
	3	बदलेगा? '%' इकाइयाँ (मिमी) में	दी गई विशिष्ट निवेश मुल्यों को CNC मशीन उपकरण में						
	- 3	Which of the following code will change		दा गई विशिष्ट निवेश मूल्यों की CNC मेशान उपकरण में						
	111	Cive machine work	pecified	input values in metric units (millimetres) in						
	- 8	Mariana de la composição								
	((c) G90	(g) (p)	G21 G25						
7	62. à	ल धातु — का मिश्रधातु है।	10.70	G23						
è	100	Bell metal is an alloy of								
		a) जिन्क और ताँबे / zinc and copper								
	(0		(p)	टिन और ताँबे / tin and copper						
	(4	, mckel and copper	(d)	लोहे और ताँबे / iron and copper						
6	3. पा	इपलाइनों (नलों) में जल हथौडा होता है, जब								
~	W	ater hammer in pipelines take place wh								
	(a) तरल पदार्थ उच्च वेग में बहु रहा हो (व	en:							
	000	, we do a find is i	lowing	with high velocity						
	14014	(b) तरल पदार्थ उच्च दबाव पर बह रहा हो / fluid is flowing with high pressure								
	(c)	(c) तरल पदार्थ के बहाव को, वाल्व को धीरे-धीरे बंद करके रोका जाता है / fluid flowing is brought to rest gradually closing a valve								
	(4)	(d) तरल पदार्थ को बहाब को, वाल्व बंद करके, अचानक रोकना / fluid flowing is suddenly brought to res								
	100/	by closing a valve	सानक राक	4) Huid Howing is suddenly brought to less						
		(97) SECTOR SCI WATER SC								
64	अन्	दरूनी ऊर्जा तथा दबाब और आयतन के उत्पाद के बु	ल को क	मा कहते हैं ?						
	Th	e sum of internal energy and product of	pressu	re and volume is known as						
	(a)	समाप्त किया गया काम / work done	(b)	उत्क्रम माप / entropy						
	(c)	पूर्ण ऊष्मा / enthalpy	(d)	C.O.P						
65.		कोण जिसपर, उपकरण की शक्ति आधारित है-								
	The	The angle on which the strength of the tool depends is								
	(a)	रेक कोण (पाँचा) / rake angle	(b)	काटने का कोण / cutting angle						
	(c)	निकासी कोण / clearance angle	(d)	धार कोण / lip angle						
66	किमी	ो वस्तु के बल vs विस्थापन वक्र के अंतर्गत आने व	ाला क्षेत्र	देता है						
65. 66.	The	area under the Force vs Displacement	curve o	of an object gives the						
		बस्तु के गतिवर्धन / acceleration of the obje		· ·						
	N N A			₹ *						
	(b)	वस्तु के वेग / velocity of the object	<u>.</u>							
	(c)	वस्तु द्वारा किया गया काम / work done by th	e objec	b))						
	(d)	उपरोक्त में से कोई नहीं / none of the above								

67. निम्नलिखित समीकरण का कोटि और डिग्री, पता लगाइए -

Find the order and degree of the following equation

$$\left(\frac{ds}{dt}\right)^4 + 3s\frac{d^2s}{dt^2} = 0$$

(a) 4, 2

(b) 2, 4

(c) 1, 2

(d) 2, 1

68. उपकरण के ग़लत अंशांकन के कारण हुई ग़लती किस वर्गीकरण में आती है?

The error caused by poor calibration of the instrument is classified under

- (a) यादृच्छिक त्रुटि के तहत / Random error
- (b) क्रमबद्ध त्रुटि के तहत / Systematic error
- (c) गलत बुटि के तहत / Illegitimate error
- (d) शोर त्रुटि के तहत / Noise error

69. फ्लाई व्हील द्वारा अवशोषित की गयी ऊर्जा की मात्रा का निर्धारण होता है-

The amount of energy absorbed by a flywheel is determined from the

- (a) ऐंठन-क्रैन्क कोण आरेख / torque-crank angle diagram
- (b) त्वरण-क्रैन्क कोण आरेख / acceleration-crank angle diagram
- (c) गति-अंतरिक्ष आरेख / speed-space diagram
- (d) गति-ऊर्जा आरेख / speed-energy diagram

70. 8 दाँतोबाला एक पिसाई का कटर 150 rpm पर घूर्णन कर रहा है। यदि प्रति दाँत फीड 0.1 है, तो mm प्रति मिनिट में मेज-गति है-

A milling cutter having 8 teeth is rotating at 150 rpm. If the feed per tooth is 0.1, the table speed in mm per minute is

(a) 120

(b) 187

(c) 125

(d) 70

एक वस्तु को क्षैतिजी कड़े प्लेट के ऊपर रखा जाता है और प्लेट को खड़ी समतल पर झुकाया जाता है ताकि जब प्लेट,
 क्षैतिज से 'φ' कोण बनाती है, तो वह वस्तु फिसलने लगती है (घर्षण का गुणांक 'μ' है) तो 'φ' है

An object is kept on a horizontal rigid plate and the plate is tilted in the vertical plane so that when the plate makes an angle ' ϕ ' with the horizontal, the object starts to slide (coefficient of friction is ' μ '). Then ' ϕ ' is.

(a) µ

(b) tan μ

(c) tan-1 μ

(d) 1/μ

72.	इनमें से कौन सा चिद्र, वृतीय रन-आवट सूचित करता है Which of the following symbols indicate circular run-out?									
	(a)	\bigcirc			(b)	\bigcirc				
	(c)	1			(d)	U				
73.		हाव प्रक्रिया चार्ट ण, देरी, यातायात,				ए तरीका अध्यय	यन है, कौन से प्रती	क संयोजन में ऑपरेश	1न,	
	In a flow process chart, used in method study for improving productivity which symbocombinations are correctly represented for operation, storage, delay, transport, inspection									
		0 Δ ⇒ D		⇒ □			$\Rightarrow \Box$ $\Box \Delta$			
74. एक द्रवचालित बाल्व में, एक मूसल को 340 N के मौलिक सम्पीडन से, कुण्डलीकार सम्पीडन रि संकलित किया जाता है। उस स्त्रिंग को फिर से 25 mm से सम्पीडित किया जाता है, जब उसपर 10 लगाया जाता है। यदि मूसल का व्यास 20 mm है तो स्त्रिंग की अकडन (II=3.14) क्या है?								10 Mpa क द्वाप	Min	
	In a hydraulic valve, the plunger is assembled with an initial compression of 340 N using helical compression spring. The spring is compressed further by 25 mm when a pressure of 10 MPa is applied. If the diameter of plunger is 20 mm what is the spring stiffness? (II=3.14)									
	VIC-VII	125.6 N/mm			(b)	112 N/mm				
	(a) (c)	139.2 N/mm			(d)	13.6 N/mr	n			
75. एक स्क्रू स्वयं-लार्किंग है, यदि										
	A sc	A screw will be self-locking if								
	(a)	(a) घर्षण का गुणांक, कुण्डली कोण से कम हो / the coefficient of friction is lesser than the helix angle								
	(b)	(b) घर्षण कोण, कुण्डली कोण से कम हो / the friction angle is less than the helix angle								
	(c)							greater than or	Ĉ	
	(d)		, कुण्डली क	ोण के स्पर्शी से ब the helix ang		र हो / the co	efficient is frict	ion is greater th	an	

76. एक कैम अनुयायी चाल में, अनुयायी में निरंतर त्वरण होता है जब वह — के साथ चलता है।
In a cam follower motion, the follower has constant acceleration when it moves with

- (a) बहुपद चाल / polynomial motion
- (b) परवलयिक चाल / parabolic motion
- (c) सरल संनादी चाल / simple harmonic motion
- (d) चक्रीय चाल / cycloidal motion

77. घरेलू प्रशीतक में C.O.P

Domestic refrigerator has C.O.P

- (a) 1 से अधिक होता है / more than 1
- (c) 1 से बराबर होता है / equal to 1
- (b) 1 से कम होता है / less than 1
- (d) उपरोक्त में से कोई नहीं / none of the above

78. एक कण का त्वरण Vs समय वक्र के तहत छायांकित क्षेत्र देता है The shaded area under the acceleration Vs time curve of a particle gives

- (a) स्थिति में परिवर्तन / the change in position
- (b) वेग में परिवर्तन / the change in velocity
- (c) त्वरण में परिवर्तन / the change in acceleration
- (d) त्वरण दर में परिवर्तन / the change in acceleration rate

79. समान रूप से वितरित भार के साथ कैंटिलीवर बीम में लंबाई के साथ बंकन आधूर्ण का परिवर्तन है

The variation of bending moment along the length in cantilever beam with uniformly distributed load is ———— in nature

(a) स्थाई / constant

(b) रेखीय / linear

(c) परवलयिक / parabolic

(d) घनीय / cubic

80. कमरे के तापमान पर शुद्ध लोहे का क्रिस्टल ढ़ाँचा है

Crystal structure of pure iron at room temp is

(a) FCC

(b) BCC

(c) HCP

(d) चतुष्कोणीय / Tetragonal