

ISRO URSC Technical Asst. 2016 Paper

Visit - teachingninja.in

भारत सरकार::अंतरिक्ष विभाग GOVERNMENT OF INDIA: DEPARTMENT OF SPACE इसरी उपग्रह केन्द्र, बेंगलूरु ISRO SATELLITE CENTRE, BENGALURU

परीक्षा पुस्तिका/Test Booklet

परीक्षा दिनांक / Date of Written Test	13.11.2016 (Sunday)
विषय / Trade	Technical Assistant (Mechanical)
परीक्षाविध / Duration of Written Test	12.30Hrs to 02.00Hrs
प्रश्नों की संख्या / No. of questions	60
उत्तर पुस्तिका में पृष्ठों की संख्या (कवर पेज सहित) No. of pages in the booklet (including cover page)	14

परीक्षार्थियों के लिए अनुदेश/Instructions to the Candidates

- 1. यह प्रश्न-पत्र, परीक्षा-पुस्तिका के रूप में हैं। सभी परीक्षर्थियों का मूल्यांकन समरुपी प्रश्नों पर होगा। The question paper is in the form of test booklet. All candidates will be assessed on identical questions.
- 2. OMR शीट पर हिंदायतों को ध्यानपूर्वक पढ़िए। OMR शीट पर रंगने और अपने उत्तरों को चिह्नित करने के लिए केवल बॉल पाइन्ट कलम (काला या नीला) से ही लिखें।

Read the instructions on the **OMR** sheet carefully. Use only Ball Point Pen (Black or Blue) for writing/ shading/ bubble on **OMR** sheet and marking your answers.

3. उत्तरों के लिए, सभी प्रत्याशियों को कार्बन इम्प्रेशन के एक अलग OMR उत्तर शीट दिया जाएगा। OMR शीट के इस कार्बन इम्प्रेशन को निरीक्षक द्वारा अलग करके परीक्षार्थी को सौंपा जाएगा।

A separate OMR answer sheet with carbon impression is provided to all the candidates for answering. On completion of the test tear the OMR Answer sheet along the perforation mark at the top and handover the original OMR answer sheet to the invigilator and retain this duplicate copy with you.

4. प्रत्येक विषयपरक प्रश्न के लिए विषय और/या जहाँ भी आवश्यक हों वहाँ बहु उत्तर विकल्पों (a), (b), (c) और (d) के साथ चित्र दिए जाएंगे। उनमें से केवल एक की सही होगा।

Each objective question is provided with a text and/or figures wherever applicable with multiple answer choices (a), (b), (c) and (d). Only one of them is correct.

5. सभी वस्तुनिष्ठ प्रकार के प्रश्नों के समान अंक होंगे। सही उत्तर के लिए तीन अंक, उत्तर न देने पर शून्य और गलत उत्तर के लिए एक अंक काटा जाएगा। किसी प्रश्न के लिए बहु उत्तर देना गलत उत्तर माना जाएगा।

All objective type questions carry equal marks of THREE for a correct answer, ZERO for no answer and MINUS ONE for wrong answer. Multiple answers for a question will be regarded as a wrong answer.

- 6. प्रश्न पुस्तिका की दाहिनी ओर ऊपर के किनारे पर <u>A</u> या <u>B</u> या <u>C</u> या <u>D</u> चिह्नित किया गया है, जिसे OMR शीट पर, डिब्बे या बबल में लिखना अनिवार्य है। ऐसा न करने पर, उत्तर-पुस्तिका का मूल्यांकन नहीं किया जाएगा।

 Question booklets have been marked with <u>A</u> or <u>B</u> or <u>C</u> or <u>D</u> on the right hand top corner, which is mandatory to be written on the OMR sheet in the box and bubble appropriately, failing which, the answer sheet will not be evaluated.
- 7. पुस्तिका में उपलब्ध जगह को आवश्यकता के अनुसार कच्चे काम के लिए उपयोग किया जा सकता है। अलग से शीट नहीं दिया जाएगा। Space available in the booklet could be used for rough work, if required. No separate sheet will be provided.
- 8. उपस्थिति शीट पर हस्ताक्षर करने से पहले, परीक्षार्थी को उपस्थिति शीट पर पुस्तिका कोड लिखना होगा। परीक्षार्थी को अपने नाम के सामने ही हस्ताक्षर करने होंगे।

Before signing the attendance sheet, the candidate should write the Booklet Code in the attendance sheet. Candidates should sign against THEIR names only.

- 9. परीक्षा के अंत में (1) फोटो चिपके लिखित परीक्षा कॉल लेटर (2) मूल OMR उत्तर शीट और (3) प्रश्न पत्र, निरीक्षक को वापस करना है। किसी भी परिस्थिति में उसे परीक्षार्थी द्वारा बाहर नहीं ले जाना चाहिए।
 - At the end of the test (1) Written test Call Letters(s) with photograph pasted on It (2) Original OMR Answer Sheet and (3) Question Paper shall be returned to the invigilator and shall not be carried by the candidate under any circumstances.

Page 1 of 14

Questions:

1.	यदि दो बल वैक्टर F1 और F2 के बीच एक साथ एक पिंड पर 0 के कोण है, तो परिणामी
	बल है If two force vectors F_1 & F_2 with the angle between them θ acting on a body
v	simultaneously, then the resultant force is
	() (D) (D) (O) (A) (D) (D) (O) (A)
	(a) $[F_1^2 + F_2^2 - 2F_1F_2\cos(\theta)]^{\frac{1}{2}}$ (b) $[F_1^2 + F_2^2 + 2F_1F_2\cos(\theta)]^{\frac{1}{2}}$
	(c) $[F_1^2 + F_2^2 - 2F_1F_2\sin(\theta)]^{1/2}$ (d) $[F_1^2 + F_2^2 + 2F_1F_2\sin(\theta)]^{1/2}$
2.	एक समभुज त्रिकोण जिसकी भुजा x है, के गुरुत्वाकर्षण केंद्र की ऊँचाई भुजा के मध्य से है
	The Centre of Gravity of an equilateral triangle of side x lies at a height measured on
	a median from any side.
	(a) $\left(\frac{2}{\sqrt{3}}\right) x$ (b) $\left(\frac{\sqrt{3}}{2}\right) x$ (c) $\frac{x}{2\sqrt{3}}$ (d) $\frac{x}{3}$
3.	
	axis which is different from the axis passing through the centroid in the same plane.
F.	(a) क्रॉस अक्ष थियरम / Cross axis theorem (b) समान अक्ष थियरम / Equal axis theorem (c) सीधा अक्ष थियरम / Perpendicular axis theorem (d) समानांतर अक्ष थियरम / Parallel axis theorem
4.	जब एक वृत्त छड़ी जिसका क्रॉस सेक्शन A , लंबाई L , और यंग माड्यूलस् E , तनन बल P के अधीन है, तो रॉड की लंबाई में वृद्धि समीकरण द्वारा दिया जाता है
	E, subjected to tensile force of P, then increase in the length of the rod is given by the
	equation
	(a) PL/AE (b) P^2L/AE (c) PL^2/AE (d) PL/A^2E
5	बंकन आर्गण आरेख में कोन्य-फ्लेक्सर बिंद्र का प्रतिनिधित्व करता है

Page 2 of 14

	E			
	The point of contra-f	lexure in a bending mor	ment diagram represents	·
	(b) न्यूनतम बंकन आ (c) न्यूनतम अपरुप	आघूर्ण / Maximum b चूर्ण / Minimum bend ण बल / Minimum sh संकेत का बदलाव / C	ing moment	nding moment
6.	जाता है। समीकरण The total strain energ		द्वारा दिया जाता है en the load is gradually	निमा के अंदर लागू किया applied with in the
	(a) σV/2E	(b) $\sigma^2 V/2E$	(c) $\sigma^3 V/2E$	(d) σ ⁴ V/2E
	Where, $\sigma = \text{stress}$, V= Total volume & E	=Young's modulus	
7.	x का मान पता लगा	रं, अगर मैट्रिक्स 2 3	2 5 x 10 1 -2 सिंगुलर है)
	Find the value of x , i	f the given matrix $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	$\begin{bmatrix} 2 & 5 \\ x & 10 \\ 1 & -2 \end{bmatrix}$ is singular	
	(a) 4	(b) - 4	(c) $\frac{1}{4}$	(d) $-\frac{1}{4}$
8.	$\frac{\pi}{12}$ रेडियंस को डिग्री	में बताएं।		
	Express $\frac{\pi}{12}$ radians		×	2
	(a) -15	(b) 30	(c) -30	(d) 15
9.	¹² C ₄ के मूल्य का पत Find the value of cor			all and a second a
	(a) 459	(b) 455	(c) 495	(d) 485
10.	क्षेत्रफल का पता लग	ाएं	5i + 7j + k द्वारा प्रति	निधित्व कर रही हैं, के ors 3i+4j and
	5i+7j+k is			Page 3 of 14

(a) $\frac{\sqrt{2}}{2}$	<u>6</u>	(b) √26	(c) 13	3	(d) $\frac{\sqrt{1}}{2}$	3
22) है Co ordi	इन AB के मध्य f तो B के निर्देशांव nates of midpoint o	र का पता लगाएँ				
	ordinates of B 4,-16) (b) (32	2 30)	(c) (-32 -30)	(d)	(32 -30)	1.00
12. [Sin (1:	(50°) Cos (300°)] + e value of [Sin (15)	[Sin (210 ⁰) Cos	(240 ⁰)] के म	पूल्य का पता		
et i	€6					
(a) 2	(b) $\frac{1}{2}$	((c) -2	(d)	$\frac{-1}{2}$	
	(x+2)(x-1)(x+3) find		पता लगाएं		*	e e
(a) $3x^2$	+8	(b) $3x^2 + 8x - 1$	$(c)2x^2$	+4 x -6	(d)	$3x^2 + 8x + 1$
If y=	$e^{3x} + e^{-5x}$ $e^{3x} + e^{-5x}$ fi	nd the value of	d^2y/dx^2	at x=0		¥i
(a) 8	(b) 34		(c) -16	(d)	16	
15. कार	ट आयरन का अद्विर्त	ोय गुणधर्म है उसक	ा उच्च	W W		
The un	nique property of ca	ast iron is its hig	gh			
	ात वर्धता / malleat लापन / ductility	oility		तह परिष्कृत / : [/ brittle	surface fir	ish

16. एक बेल्ट ड्राइव प्रणाली में, जब बेल्ट की गति बढ़ती है, तो In a belt drive system, when the speed of belt increases,

- (a) बेल्ट और चरखे के बीच घर्षण गुणांक बढ़ जाता है Co-efficient of friction between the belt and pulley increases
- (b) बेल्ट और चरखे के बीच घर्षण गुणांक घट जाता है Co-efficient of friction between the belt and pulley decreases

- (c) प्रसारित शक्ति में कमी होगी power transmitted will decrease (d) प्रसारित शक्ति में वृद्धि होगी power transmitted will increase 17. एक चरखे और बेल्ट ड्राइव में, यदि बेल्ट का द्रव्यमान प्रति लंबाई m है और T बेल्ट का तनाव है तो अधिकतम विद्युत प्रेषण के लिए बेल्ट का वेग _____ के बराबर है. In a pulley and belt drive, if m is mass of belt per unit length and T is the belt tension then the velocity of belt for maximum power transmission is equal to (a) $\sqrt{\frac{T}{m}}$ (b) $\sqrt{\frac{T}{2m}}$ (c) $\sqrt{\frac{2T}{m}}$ (d) $\sqrt{\frac{T}{3m}}$ 18. पिच वृत्त व्यास **D** का स्पर गियर में दांत **T** संख्या में है मॉड्यूल m ____ परिभाषित किया A spur gear with pitch circle diameter D has number of teeth T. The module m is defined (a) $m = \frac{D}{T}$ (b) $m = \frac{T}{D}$ (c) $m = \frac{\pi D}{T}$ (d) $m = \pi DT$ 19. एंटिफ्रिक्शन बीयरिंग हैं Antifriction bearings are (a) पतली चिकनाई बीयरिंग / thin lubricated bearings (b) हाइडोडायनेमिक्स बीयरिंग / hydrodynamic bearing (c) हाईड्रोस्टेटिक बीयरिंग / hydrostatic bearings (d) गेंद और रोलर बीयरिंग / ball and roller bearings एक पिंड का आवेग ____ में परिवर्तन है। The impulse of a body is rate of change of its (a) बंल / Force (b) त्वरण / Acceleration (c) संवेग / Momentum (d) विस्थापन / Displacement
- 21. जब एक पिंड पर विभिन्न कार्रवाई रेखाओं के साथ दो बराबर, विपरीत एवं समानांतर बल क्रिया करते हैं, तो वे गठित करते हैं
 When two equal, opposite and parallel forces with different lines of action act on a body, they constitute a

Page 5 of 14

					*
	(a) आघूर्ण / Moment	(b) युः	गल / Coup	le	
	(c) जड़ता / Inertia	(d) उ	परोक्त में से	कोई नहीं / :	None of the above
	जब द्रव्यमान m का एक करता है, तो पिंड द्वारा अनुष When a body of mass m is centre of rotation, the radia	भवित त्रिज्य त्वरण rotating with an ang	होता gular veloci	हि ty o at a di	stance R from the
	(a) $\omega^2 R$	(b) ω R	(c) ω/R		(d) R/ω
	, बेल्ट ड्राइव प्रणाली में, होता है एवं v बेल्ट का वेग हो In a belt drive system, if T ₁ side and V is the velocity o	ता है, तो प्रसारित इ is the tension on th	राक्ति e tight side	है , T ₂ is the to	
	(a) $(T_2-T_1) V$	b) (T ₁ -T ₂) V	(c) (T ₁ -T	2) / V	(d) $V/(T_1-T_2)$
24.	, पोर्टर गवर्नर व The Porter governor is an e			2	
	(a) जड़त्व गवर्नर / Inert (c) अपकेन्द्री गवर्नर / Ce				/ Flywheel governor / None of these
25.	तरल का गुणधर्म जो अपर The property of a fluid that				
	(a) श्यानता / viscosity (c) उत्प्तावकता / buoyan	су) पृष्ठ तनाव / यता / compr	surface tension essibility
26.	. M kgf भारवाले पिंड को त पिंड का आभासी भार		ाता है तो वह 1	N kgf के तरत	न को विस्थापित करता हैं।
	A body of weight M kgf is	immersed in a fluid	and displa	ces N kgf o	f fluid.
	The apparent weight of the	body is			
	(a) M+N Kgf	(b) N Kgf	(c) M-N	Kgf	(d) none of these
27.	. परिवर्ती अनुप्रस्थ काट की नत	नी से असंपीडित द्रव लग	nतार A ₁ से 🔏	$oldsymbol{A_2}$ को बहता $ar{b}$	है तो

Question Booklet Series - A

	-	-	rough a pipe of varying cr at $A_1 = 2$ m/s. Value of V		
	nom A ₁ to A ₂ .	$\mathbf{A}_{1}/\mathbf{A}_{2}=0.5, \mathbf{v}_{1}$	at $\mathbf{A}_1 = 2$ m/s. value of \mathbf{v}	2 at A2 18	
	(a) 4 m/s	(b) 1 m/s	(c) 0.25 m/s	(d) 3 m/s	
28.		ने कौन सा नियम द्रवचालित following laws is applica		ž.	30
		यम / Kirchhoff's law सिद्धांत / Archimede's p	` '	का नियम / Pascal's law गम / Newton law	
29.		मात्रीकरण के वि s used for quantifying	लेए प्रयोग किया जाता है		
	(a) सतह खुरदः(c) रिक्ति / gap	रापन / surface Roughnes		radius / screw Pitch	
30.	बेलनाकार The symbol for C	के लिए प्रतीक है ylindricity is		er er	
	(a) O	(b) -	(c) /y	(d) (o)	
ž.	कहते हैं		सके घूर्णन अक्ष के बीच आ		-
	(a) अक्षीय रन उ (c) असरेखण /	পার্ব্ত / Axial run out Misalignment	(b) त्रिज्य रन आउट (d) सर्पण / S		
32.	नार्मल डिस्ट्रीब्य् In a Normal distr	शन वक्र में, $\pm 3\sigma$ परासन् ibution curve, $\pm 3\sigma$ range	न का अर्थ है e means	154	
	(a) 99.74%	(b) 97.94%	(c) 95.46%	(d) 68.26%	
33.	In a stress – strain (a) पराभव बिंदु /	कृति में, हूकस का नियम of a material, Hooke's L ' Yield point जा / Plastic limit	aw is valid up to	शिमा / Elastic limit दु / Upper yield point	
34.	जब एक शॉफ्ट आघूर्ण के	•••	आघूर्ण T से संबंधित होता	₩1	
				Page 7 of 14	ŀ

When a shaft is subjected to a bending moment M and a twisting moment T, then the equivalent twisting moment is equal to

- (a) M+T

- (b) $M^2 + T^2$ (c) $\sqrt{M^2 + T^2}$ (d) $\sqrt{M^2 T^2}$
- 35. यदि α लीड कोण और ω घर्षण के कोण को दर्शाता है, तो पेंच की दक्षता द्वारा दिया जाता है

If α denotes the lead angle and φ denotes the angle of friction, then the efficiency of the screw is given by

- (a) $\frac{\tan(\alpha \phi)}{\tan \alpha}$ $\frac{\tan \alpha}{\tan \alpha}$ (c) $\frac{\tan(\alpha + \phi)}{\tan \alpha}$ (d) $\frac{\tan \alpha}{\tan(\alpha + \phi)}$

के बराबर होगा 36. दिए गए चित्र में बल F

Force F in the given figure equals to:

- (d) $3\sqrt{3} \text{ kN}$

37. नियम जो तापमान के मापन के आधार को बनाता है

The law that forms the basis of measurement of temperature is

- (a) ऊष्मागतिकि का 0th नियम 0th law of Thermodynamics
- (b) ऊष्मागतिकि का 1st नियम
 - 1st law of thermodynamics
- (c) ऊष्पागतिकि का 2nd नियम 2nd law of thermodynamics
- (d) Kirchhoff's का नियम Kirchhoff's law
- 38. एक प्रणाली का गहन गुणधर्म वह है जो

Intensive Property of a system is the one that

- (a) द्रव्यमान पर निर्भर नहीं करता है / Does not depend on mass
- (b) द्रव्यमान पर निर्भर करता है / Depends on mass
- (c) पथ पर निर्भर करता है / Depends on path followed
- (d) द्रव्यमान एवं पथ पर निर्भर करता है / Depends on mass and on path followed
- 39. गे- तुसाक के नियम के अनुसार, इनमें से कौन सा सही बयान है

As per Gay Lussac's law, which one is the correct statement

 P_T = Pressure at temperature T^0 C; P_0 = Pressure at temperature 0^0 C

(a)
$$P_T = P_0 \left(1 + \frac{T}{273}\right)$$

(a)
$$P_T = P_0 \left(1 + \frac{T}{273}\right)$$
 (b) $P_T = P_0 \left(\frac{1}{T} + 273\right)$

(c)
$$P_T = P_0 (273+T)$$

(d)
$$P_T = P_0 (T+1)$$

- 40. प्रक्रिया जिसमें सीमाओं के आर-पार कोई भी ऊष्मा अंतरण नहीं होता है उसे . कहते हैं / The process in which no heat transfer takes place across the boundaries is called as
 - (a) एडियाबेटिक प्रक्रिया / adiabatic process
 - (b) आइसोकोरिक प्रक्रिया / isochoric process
 - (c) समतापी प्रक्रिया / isothermal process
 - (d) आइसेनटोपिक प्रक्रिया / isentropic process
- 41. दाब में वृद्धि के साथ जल की संतृप्ति तापमान में वृद्धि करता है The saturation temperature of water with increase in pressure increases
 - (a)व्यक्रम / inversely
 - (b) पहले धीरे-धीरे से और फिर तेज़ी से / slowly first and then rapidly
 - (c) पहले तेज़ी से और फिर धीरे-धीरे से / rapidly first and then slowly
 - (d) रैखिक से / linearly
- 42. ऊष्मागतिकी के प्रथम नियम के लिए सही बयान है

Correct statement for First law of thermodynamics

- (a) प्रणाली और आस-पास की कुल ऊर्जा निरंतर बनी रहती है Total energy of system and surroundings remains constant
- (b) प्रणाली द्वारा किया गया कार्य प्रणाली द्वारा अंतरित ऊष्मा की बराबरी करता है Work done by the system equals to heat transferred by the system
- (c) प्रक्रिया के दौरान एक प्रणाली का आंतरिक ऊर्जा निरंतर बनी रहती है Internal energy of a system remains constant during a process
- (d) प्रकिया के दौरान प्रणाली को एट्रॉपी निरंतर बना रहता हैं Entropy of a system remains constant during a process.
- 43. डीज़ल चक्र की दक्षता ओटो चक्र के समीप जाता है जब

The efficiency of diesel cycle approaches to Otto cycle efficiency when

- (a) कट-ऑफ अनुपात श्रन्य है / Cut off ratio is zero
- (b) कट-ऑफ अनुपात बढ़ जाता है / Cut off ratio is increased
- (c) कट-ऑफ अनुपात घट जाता है / Cut off ratio is decreased
- (d) कट-ऑफ अनुपात यूनिटि के बराबर होता है / Cut of ratio is equal to unity

Question Booklet Series - A

44	. एक जेट इंजन			
	A jet engine works on th	e principle of conserv	ation of	
	(a) ऊर्जा / Energy (c) कोणीय संवेग /angul	ar momentum	(b) द्रव्यमान (d) रैखिक	/ mass संवेग / linear momentum
45.	बॉयल नियम के अनुसार, व As per Boyle's law, whic		itement?	120
	(a) P α (1/V) (b) P α	V (c) T α (1/V)	(d) T	CαV
	जहाँ P, V a T क्रमश: गैसी Where P, V & T are respo	•	•	of gaseous medium.
46.	ऊष्मीय चालकता का यूनिट Unit of thermal conductiv			
	(a) J/m/s (b) V	$W/m^2 K$ (c) V	V/mK (d)	J/°C
47.	एक पट्टी जिसका अनुप्रस्थ व पूर्वानुमान द्वारा नाप की मात्र The amount of heat transf	ग स्थानांतरित किया जात	ग है	a g
	and thickness of 0.02 m v	vith following assump	tions	
	Material conductivity (a) 2 kW	(b) 6 kW	ature gradient 20 °C (c) 3 kW	is (d) 15 kW
48.	संपीडक को छोड़ने के उपर Condition of refrigerant a		••	
	(a) अति गर्म वाष्प / St (c) संतृप्त मिश्रण / Sat		(b) संतृप्त तरल / Sa (d) संतृप्त वाष्प / Sat	
49.	ऊष्मा के फूरियर नियम के As per Fourier law of hea	•	•	
	(K: ऊष्मीय चालकता / section, T: तापमान/Temp co-ordinate along the dire	perature x: ऊष्मा प्रवाह		
	(a) –KA dT/dx	(b) KA dT/dx	(c) - KA dx/c	dT (d) KA dx/dT
	*			

Page 10 of 14

	परमाणु रिऐक्टरों में, कौन of Nuclear reactors, w	
Natural L (b) प्राकृतिक यू Natural L (c) संवर्धित यूरे Enriched (d) संवर्धित यूरे	Jranium is used as fuel a रेनियम ईंधन के रुप में एवं म Jranium is used as fuel व नियम ईंधन के रुप में एवं मॉर Uranium is used as fuel नियम ईंधन के रुप में एवं मॉर	गॅडरेटर के रुप में पानी का प्रयोग किया जाता है and water as moderator गॅडरेटर के रुप में भारी पानी का प्रयोग किया जाता है and heavy water as moderator डरेटर के रुप में पानी का प्रयोग किया जाता है I and water as moderator डरेटर के रुप में भारी पानी का प्रयोग किया जाता है I and heavy water as moderator
•	इन टरबाइन का प्रयोग किय aly, these turbines are us	
	बाइन / Kaplan turbine Pelton wheels	(b) फ्रांसिस टरबाइन / Francis turbine (d) डेरियाज़ टरबाइन / Deriaz turbines
) का प्रयोग के मापने में वि fferential transformer (I	केया जाता है LVDT) used for measuring
(a) वेग / Velo (c) विस्थापन /	•	(b) लरण / Acceleration (d) समय / Time
	रान G33 कोड का उद्देश्य है 33 code during CNC pr	
_	पी/Zero preset (b)मैट्रि /Thread cutting (d) र	क यूनिटों में विमा/ Dimensioning in metric units
54. कास्ट आयरन में	वेद्यमान कार्बन, रासाया	निक संयोजित रुप में हो सकता है को कहते हैं y occur in the chemically combined form known as
(a) फेराइट / 1 (c) सिमेंटाइट /		(b) पियरलाइट / Pearlite (d) स्टिडाइट / Steadite
	ग की सफाई की जाती है ch castings are cleaned	को कहते हैं is called
	fachine shop Fettling shop	(b) वर्कशाप/Workshop (d) फाउंड्री शाप/Foundry shop
		*

Question Booklet Series - A

56.	. निघर्षण कार्य से उपकरण को रोकने के लिए उपकरणों पर को उपलब्ध कराया जाता है / In order to prevent tool from rubbing the work on tools are provided.
	(a) रेक कोण/rake angles (b) राहत कोण/relief angles (c) फ्लूट कोण/Flute angle (d) स्टार्ट कोण/start angle
57.	. निम्नलिखित मिलिंग मशीन में से, घुटनों पर स्वईवल व्यवस्था उपलब्ध कराने द्वारा ऊर्ध्वाधर प्लेन में पटल को झुकाया जाता है In which of the following milling machine, the table can be tilted in a vertical plane by providing a swivel arrangement at the knee?
	(a) यूनिवर्सल मिलिंग मशीन / Universal milling machine (b) प्लेन मिलिंग मशीन / Plain milling machine (c) ओमनिवर्सल मशीन / Omniversal milling machine (d) हस्त मिलिंग मशीन / Hand milling machine
58.	, एकल बिन्दु टर्निंग प्रचालन जिसमें सीमेंट कार्बाइड और स्टील संयोजन जिसमें टेयलर धात 0.25 है का कतरन वेग आधा किया जता है तो उपस्कर की आयु होगी In a single point turning operation with a cemented carbide and steel combination having a Taylor exponent of 0.25 , if the cutting speed is halved, then tool life will become
	(a) half (b) two times (c) eight times (d) sixteen times
59.	is not a method of casting cleaning
	(a) शॉट क्षेपन/Shot blasting (b) रेत क्षेपन/Sand blasting
	(c) टंबलिंग/Tumbling (d) अम्ल/Acid blasting
60.	बोतलें एवं तैरते वस्तुओं जैसी वस्तुओं का उत्पादन करने के लिए ब्लो मोलिंडंग प्रक्रिया मात्र तक अनुप्रयुक्त किया जा सकता है Blow molding process to produce objects such as bottles & floatable objects can be applied to only (a) धर्मो सेटिंग प्लास्टिकस् / Thermo setting plastics (b) धर्मो प्लास्टिकस् / Thermo plastics (c) लेमिनेटड प्लास्टिकस् / Laminated plastics (d) रिइनफोर्सड प्लास्टिकस् / Reinforced plastics

Rough work page रफ वींक पैज

