

Teachingninja.in

Latest Govt Job updates

Private Job updates

Free Mock tests available

Visit - teachingninja.in

OPSC OAS

**Previous Year Paper
Mains 2019
(Mathematics) Paper-I**

CSM – 52/19

Mathematics

Paper – I

Time : 3 hours

Full Marks : 300

The figures in the right-hand margin indicate marks.

*Candidates should attempt Q. No. 1 from
Section – A and Q. No. 5 from Section – B
which are compulsory and any **three** of
the remaining questions, selecting
at least one from each Section.*

SECTION – A

1. (a) Let p be a prime and m , a positive integer such that p^m divides $o(G)$. Then prove that there exists a subgroup H of G such that $o(G) = p^m$. 15
1. (b) Prove that if V is a finite dimensional vector space and $\{v_1, v_2, \dots, v_n\}$ is a linearly independent subset of V , then it can be extended to form a basis of V . 15

(c) If H and K are finite subgroups of group G of order $o(H)$ and $o(K)$ respectively, then prove

$$\text{that } o(HK) = \frac{o(H)o(K)}{o(H \cap K)}. \quad 15$$

(d) Find the equation of the sphere circumscribing the tetrahedron bounded by the planes $y + z = 0$, $z + x = 0$, $x + y = 0$ and $x + y + z = 1$ and find its radius and centre.

15

2. (a) Find all the homomorphisms from $\mathbb{Z}/4\mathbb{Z}$ to $\mathbb{Z}/6\mathbb{Z}$. 15

(b) Let R be a commutative ring with unity. Let A be an ideal of R . Show that $\frac{R[x]}{A[x]} \cong \frac{R}{A}[x]$.

Hence, prove or disprove that if A is prime ideal of R , then $A[x]$ is prime ideal of $R[x]$. 15

(c) Let V and W are two vectors spaces and let $T : V \rightarrow W$ be a linear transformation, then
Rank T + Nullity $T = \dim V$. 15

AK - 52/3

(2)

Contd.

(d) Find the enveloping cylinder of the surface

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \text{ and the equations of}$$

whose generators are $x = y = z$. 15

3. (a) Let R be a ring having more than one element such that $aR = R$ for all $0 \neq a \in R$. Show that R is a division ring. 15

(b) Prove that all vectors in the vector space \mathbb{R}^3 with $v_2 - v_1 + 4v_3 = 0$ is a subspace of \mathbb{R}^3 . Determine a basis and the dimension of the subspace. 15

(c) Diagonalize the matrix $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$ and find the modal matrix. Hence find A^4 . 15

(d) Check whether the matrix $A = \begin{bmatrix} i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0 \end{bmatrix}$ is Hermitian or Skew-Hermitian or unitary. Find its eigenvalues and eigenvectors. 15

4. (a) Find the range, rank, kernel and nullity

of the linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$

such that $T(x, y, z) = (x + z, x + y + 2z,$

$2x + y + 3z)$. 15

(b) Show that every subgroup of an abelian

group is normal. Give an example. 15

(c) The line of intersection of a pair of

perpendicular tangent planes to the

ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, passes through

a fixed point $(0, 0, \alpha)$ Show that the line of

intersection lies on the cone $x^2(b^2 + c^2 - \alpha^2)$

$+ y^2(c^2 + a^2 - \alpha^2) + (z - \alpha)^2 (a^2 + b^2) = 0$.

15

(d) Find the eigenvalues and eigenvectors of

the matrix
$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 15

SECTION – B

5. (a) Let $f : [0, 1] \rightarrow [0, 1]$ be a contraction map.

Then (i) f has a unique fixed point $\ell \in (0, 1)$ and (ii) given $x_0 \in [0, 1]$, there exists a sequence (x_n) defined by the iteration scheme $x_{n+1} = f(x_n)$; $n = 0, 1, 2, \dots$ such that $x_n \rightarrow \ell$ and $|x_n - \ell|$

$$\leq \frac{c^n |x_1 - x_0|}{1 - c}, n \geq 1. \quad 15$$

(b) The arc of the cardioids $r = a(1 + \cos\theta)$ included between $-\pi/2 \leq \theta \leq \pi/2$ is rotated about the line $\theta = \pi/2$. Show that the area of the surface thus generated is

$$48\sqrt{2\pi a^2/5}. \quad 15$$

(c) Find the equation of the tangent plane and the normal line to the surface $yz - zx + xy + 5 = 0$ at the point $(1, -1, 2)$. 15

(d) Prove that a monotonic increasing sequence (x_n) bounded above is convergent and $\lim x_n = \sup x_n \in \mathbb{R}$. Also, prove that the sequence $x_n = (1 + \frac{1}{n})^n$ converges. 15

6. (a) Let $f : [0, 1] \rightarrow \mathbb{R}$ be defined by $f(x) =$

$$f(x) = \begin{cases} \frac{1}{n}, & \frac{1}{n+1} < x < \frac{1}{n}, \text{ where } n \in \mathbb{N}. \\ 0, & x = 0 \end{cases}$$

Show that f is integrable and

$$\int_0^1 f(x) dx = \frac{\pi^2}{6} - 1. \quad 15$$

(b) If $f(z) = u(x, y) + iv(x, y)$ is differentiable at z_0 , show that the Cauchy-Riemann equation hold at $z_0 = x_0 + iy_0$. Again, show that the function f defined by $f(z) = |\operatorname{Re} z \operatorname{Im} z|^{1/2}$ satisfies the Cauchy-Riemann equation at origin. Is it differentiable at origin? Justify. 15

(c) Show that the radius of curvature of the curve

given by $x^2y = a\left(x^2 + \frac{a^2}{\sqrt{5}}\right)$ is the least for

the point $x = a$ and its value there is $\frac{9a}{10}$. 15

(d) Show that the improper integral $I = \int_1^x \frac{\sin t}{t^p} dt$

is convergent if $p > 0$ and test the

convergence of the integral $\int_1^x \sin \frac{1}{x^2} dx$. 15

7. (a) Evaluate $I = \oint_C \frac{z^2 + 4}{z^3 + 2z^2 + 2z} dz$ where

C is $|z| = 1$. 15

(b) Show that the function $f(x, y) =$

$\frac{e^{-|x-y|}}{x^2 - 2xy + y^2}$, when $(x, y) \neq (x, x)$ and

$f(0, 0) = 0$ is continuous at $(0, 0)$. 15

(c) Verify Stoke's theorem for $F = [y^2, xy, -xz]$,

where S is the hemisphere $x^2 + y^2 + z^2 = a^2$,

$z \geq 0$. 15

(d) Find the volume of the solid surrounded

by the surface $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1$.

15

8. (a) Prove that $\int_0^{\infty} \frac{x^m - 1}{1 + x^n} dx = \frac{\pi}{n \sin\left(\frac{m\pi}{n}\right)}$ for $m, n \in \mathbb{N}$ with $n > m > 0$.

15

(b) Verify Green's theorem, find the area of the region in the first quadrant bounded by the

curves $y = x$, $y = \frac{1}{x}$, $y = \frac{x}{4}$.

15

(c) Prove that the vector function $\mathbf{F} = [6xy + z^3, 3x^2 - z, 3xz^2 - y]$ is irrotational. Find a scalar function $f(x, y, z)$ such that $\mathbf{F} = \nabla f$.

15

(d) Find all possible Laurent series of $f(z) =$

$\frac{7z^2 + 9z - 18}{z^3 - 9z}$ about its singular points.

15

