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11 IF fe,) is a bounded seguence of real numbers, then the sequence <ﬂ‘ | 15
L1
(1 divergent
(2] converges Lo one
L4 converges to zero
(4] a Cauchy zequence but not convergent
o The senes i |,r—1:|” bt -'.:__.lJI I8
=1 i
(11 absolutely convergent
(2] vondilicnally convergenl
L3 {:‘unverges but not conditionally
(41 divergent
=1 If [x] and [x} denele the greatest integer value and fractional value of & respectively,
then fix) = [#1® — [¥12 is ;
i1 continuous on [-1 1] L continuouz on -1 1)
(3 continuous on -1 1| (1) continuous o (=1 1)
4, Let £ R — R defined as
] ) o ;
5 ‘—1 if v 15 rational and ged. of (e, n) = 1
fix) = n
1, 1f s irrational
Then flxi 15
(1) eonlinuous at x = 1 but net at x = 3
{2 continuous at x = 1 and x = 3
(3 gontinunus at ¥ = 3 bul nol at x = 1
(4] dizeontinuoug at ¥ = 1 and ¢ = 3
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&. The sequence of functions {f (x}} is defined by [ (x) = % Then (f (x)) :
(1) converges unifermly te zero on R

(2} converges pointwise to zero but not uniformly en [0, 1]

(3) converges uniformly to zero on [0, 1]

(4 does not converge on [0, 1)

6. Define /: [0, 1] =» R by

2, ifxisrational

flz)=
0, ifxisirrational
Then :
1 1
(1)  f is Riemann integrable and _[ flz)dx :J. fx)dx =2
0 L
L i
(2) £ is not Riemann integrable and [ fa)dx =2, [ F(x)dx=0
0 L

i 1
(3) [ is Ricmann integrable and _[ flx)dx =I flx)de =0
O 1]

1 1
{4)  f i3 not Riemann integrable and I flxlde = D,I flxjde =2
0 ]

F If # and { are respectively the supremum and infimum of the set
=1 / '
E= { 2:] JlI,/n e N+, then length of the interval [{, £] is :
n
i1 1 (2 =
) | 1
3 2 O
' 4 ’ 1
JL-413-MAT—A 3 P.TO
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8. f:00, 1] = R defined as

xisinl,, x {0, 1]

fag=y 2=
0, x

1]
=

18 !
(1)  discontinuous at x = 0
(2} continuous but not differentiable on |0, 1]
(3) differentiable on [0, 1] but not of bounded variation
(4) bounded variation on [0, 1] and differentiable
9. (5,1 is a 'sequence of real numbers such that {5, _ ; — 5,1 < an for all
n € N. Then {5 } is :
(1) a Cauchy Sequence and iz divergent
12) a Cauchy Sequence
(3}  monotonically incressing and met bounded
(4) monotonically decrcasing
10. Ff:01,2] = R and g : [1, 2] = R are defined by flx] = Jx and gx) = i_
Consider the [ollowing statements : i

(@)  The slope of the tangent to the curve ¥ = flz) parallel to the line joining

;1) and (242) is at ==+ h(h>0)

b

(i) The slape of the tangent to the curve y = glx) parallel to the line joining

1 :
(1, 1} and [2: E] is at ¢ where ¢* =2 + 21(h>0)

Which of the above atatementiz) is(are) true 7

(1} Only (a) is true (23 Only (h) i= true
(3} Both {¢) and (&) are false i) Both {a) and (&) are true
JL-413-MAT—A 4
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11.  f: [, 1] - R defined by

I.TPsin(x “], ifx+0

7o) -
i, iz =0
el l
where P and @ are real numbers, ¢ > 0. Consider the series Tu, = E f
w0
Then :
(1) filx) 1s bhounded for every P and XZu, is divergent
(2] f'lx} 15 continuous for every P and Zu, iz divergent
(3 f710) exasts if Xu, is convergent
(4] flx) 15 continuous for every P
n! 1) : .
12, Lo ={1)" 1+ ‘ then hm supt, is :
L i Ho—
(1) -1 (2) L
(3} does not exst {4) 1
13. Which of the following i3 a connected subset of B, where g, b, ¢ are real numbers
and g = b < ¢ ?
(1) Z (2] Q
(3} la, b) (4) e, &) o (B, ¢
14. The real line R with the metric
WY ifxey
d () =x
D, Wr=y
is
(11 complete (2) separable
(3] compact (4) connected
15. [f M, R) denotes the metric space of all 4 x n squure matrices with real entries,
1
|/ IJ\H
the metric induced hy the norm [A| = Z |”‘Lr where A = layl, , , and
i )

if 5 (R) and T, (R} denote the sets of singular and non-singular matrices
respectively, then

1) both 5 (R) and T (R} are open

(29 5,(R) is open and T, (R) iz closed

(3) S.(R) is closed and T, (R) is open

(4)  Both S5,(R) and T,(R) are closed

JL-413-MAT—A i} RT0
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16. Which of the following 1s mot & normal space ?
(1) R with usual topology
(2] R with discrete topology
(3 Ry, (R with Lower limit topology)
(4} R = By
17. Which of the following subsets of R x R is connected ?

(1) {[r, }r}lfxg + oy = 1} (2) {{x }-}ff"-.xz =g 1}

{3 {(:c, }r}.ijf # 'D} () {fx y}.x eQ,ve Q}

18. If A is any connected subset of an infinite metric space (X, d) with at least Lwo
distinet points, then A is !

(1] a sel with exactly two points
(2) a finite set with at least two points
(3 a eountably infinite set
(4} an uncountable set
19. If the function [ | @ — @ is defined by
[y N x" < 2
f(x)=1

|1, otherwise

on the set @ of all ratignal numbere with usual metric, then [ is @

(1) Continuous on
(2 Discontinuous al x = +2
(3 Darboux continuous

(4) Continuous but not differentiable
20. The set ¥ = l{z, ¥) & R x Rfx > 0} with the eo-finite topology is :
(1) both second countable and separable

(i) separable but not second countable

(3) neither second countable nor zeparable
(4) gsecond countable but not separable
JL-413-MAT—A G
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21

In the topological space @ of rational numbers with usual topology, the set
E= (—\-"E, wﬁ} ™Q is ;

(1 compact but not closed

(2 closed but not bounded

{3)  closed and bounded but not compact
i4) compact, closed and bounded

22, If ¢ denotes the Euler's phi funetion, then o{1000) =
1) L 2 400
(3 100 (4) 40
23 If a'% + 1 is divisible by 10, then a possible value of n from the following is:
(1) 10 {23 11
(3 12 {4} 13
24, If n ia an even number with n > 6, then there exist two primes p and g such
that :
(1) ool fnh. pa) =1 (2) ged, (n —p,n —g) =1
{3 ged. (!, n% =1 {4} ged. (np, nﬂq} =
25.  The equation 26x = 4 (modulo 11) has :
(1) infinitely many solutions for x module 11
(2 only two solutions for x module 11
(3 orly one solution for ¥ module 11
(4) no solution for x modulo 11
26. If @ and b denote residue classes modulo p and if @ = &, then :
(1)  p dividez ab (2) p dividez a + b
(3 p divides a = b (4) p divides %
2y, Ife =05 imod k) and 0 £ |a -~ &| < k, then :
(1) goed. (g, b) = 1 (2) £ > b
(3 o< b (4] 1 =5
28, If P 1z prime, which of the following 15 true ?
(1) (P — 1) = —1lmod P) (2) Pl = 1{mod P)
(3) (P - 1)l/= Il(mnd F} {4) P! = -limod P)
29,  Which of the following is nof true ?
(1)~ (12)F = 12(mod P) (P is Prime)
() Z 0(d) =125 (¢ is Euler’s phi function)
1125
(3) 12x = 48(mod 18) has no solution
(40 r° + 1is divisible by 5, 0 < r <9 = r = 4, 9
30. If o iz the Euler totient function, then E {:{d!:l =
d/185
(1) 125 {2} 25
(3 115 (4) B
JL-413-MAT—A 7 P.T.O
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31.  Let @ be a non-zero element in a group G with Ola) = n and m 15 relatively

prime to n, Then
(1} Oig") < m (2 ™) = o™
3y @™ < n (4) O@™) = n
32 If |A : B] dencte the index number of A in B, and H, K are two subgroups of
a finite group  such that I ¢ K, then :

(1} GG : H} = |G K]lG; : H] (2) G : Hl = [G : K|[K : H
(3) H v K iz not a subgroup (4) G H Kl =G H
33, If 3 is a finite non nbelian group of order 27 and if Z((3) 18 center of G, then :
(1) ZIG) = jel () EGY =G
(3) OFGH = 3 (41 O(Z(G) = 9
34 If & is a finite group and O(G) = 28, then the number of 7-Sylow subgroups
of {3 are !
(1} two (20 nre
(3 three (4) infinite
35, In the group Z; x 7, the number of subgroups of order 4 is .
Al 18 {2 8
(3) 6 (41 1
35, A subgroup of order 9 of the group Zg x Z;, ia :
(1) 7y (2} Zy = 2y
(3 Zg = Zg (41 24
37. In a group of order 4, if @ = o' % a e G, then number of subgroups of G is:
(1) 2 (2} 3
(3 4 (1) 5
38. If (Z, +) 18 & group, then ('_:[E‘ 10
vk
(1 infinile (2)
(1) 4 (4) 8
39,  If order of a group iz 231, then the number of elements of order 11 in that
group 18
(1] 8} {2 21
(3} 11 L4 11
JL-413-MAT—A 3
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40, @ and R are the rings of ralional and real numbers with respect to usual addition
and multiplication. 8 = {(x, 3, OWx ¢ R, v € Q! is :
(1) an integral domain but not a field
(2) field
(3] commulative ring with unity with zero divisors
(4) non-commutative ring withoul zero divisors
41, The number of non-zero nilpotent elements in an integral domain is :
(1 (1
(2) 1
{3 2
{4) the order of the integral domain
42. The number of ideals of order 25 in the ring 2y, is :
(1) 9 (2) 4
(31 2 (4) 1
43 The number of prime ideals in the ring (@, +, .) of rational numbers is :
(1) 0 (2) 2
(3 infinite (4} L
44, Il Z denotes the ring of integers, then the number of non-zero ring homomorphisms
from & to & is :
(1) 1 (2) 2
(3} 3 {4) 5
45.  The charactenistic of a Boolean ring 1s :
(1) i {(2) 1
(31 P (4) 4
46, In ¥s the number of idempotent elements and nilpotent elements are denoted
by x and v respectively, then :
(1} x o<y (2) XN
(3) = 4 x+yv=2=R
47. Il Z, denetes the ring of integers modula n and y : Z — Z; x Z; defined by
win) = (A, ), then the kernel of y is :
{1) 1] (2) 67,
(3] 32 (4) 22
48.  In the ring of Gaussian integers if UJ iz an ideal, then it is a ;
(1) prime ideal {2) principal 1deal
(3} maximal 1deal (4 a field
JL-413-MAT—A 9 P.T.O
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49, The dimenszion of a vector space of polynomials of degree = n over a field

Fis :
1) n+1 (2) n
(3) n-1 (4) infinity
50. A subspace of the vector space V4(R) among the following 1s :
(1} [(x, ¥, 2lxy < O} (2 Hx, ¥, 2)x < 0]
@) ltx, y, 2ix® + ¥+ 2% < 1] (4) b, ¥, 2x + 2 = 0}
A, A Veetor in V,(R), which is not in the linear span of 5 = {(1, 21, (3, 6)] € VuiR),
15 :
(1) (5, 10) {(2) (-3, —6)
(3) 4, Tl {d] (4, 8)

52, A basis of R¥R) is :
{1) 3, 0, 0. (0, 4, D}, (1,1, O} () (7, 0, 00, 40,7, 0, (7, 7, T™H
{3) {5, 0, 0% (0, 0, 0), (2, 1, 1} (4} {1, 0, 03, (5, 0, 0}, (0, 0, 2))

53. The determinant of the matrix of the linear Transformation T : R* — R? given
by T{a, b, ¢l = (3a + b, -2¢ + b, -0 + 2b + dc} with respect to any basis is :

(1) 10 2y &
(3) 2 (4} 20
54. If 8 and T are subsets of a Vector Space V(F), then L8 v T) =
(1) L(8) (2) LIT)
(3) L{S) + LT (4) L(8) u LIAT)

55.  Let Vy(C) be the inner preduet space with respect to the standard inner product.
A Vector in V,(C) orthogonal to the Veetor (1 — £, 1 + i) is @

i ] (1 + i, L4 t) (2} (=1 + ¢, 1 + )
3 4 +i 1—=4i oy fel=i 1=
H6. In an inner product space ViF) :
W e B) = e + Bl 20 (e B = o] - 6
3 e B) = o B @ (e B = o ]
57. The eigenvalues of a 3 x 8 matrix P are 3, 1 and -2, then 6P =
(1  5l-2P + P? (29 ol + 2P + P2
(3) 5L+ 2P — P? (4) 51 — 2P — P?
JL-413-MAT—A 10
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5. IfA=|1 0 1|, then A% =

0 1 0©
1 o0 0 1 0 0
(1) g 1 0 (2) 25 1 0
o 0 1] 125 0 1
1 D 0 1 0 0]
(3) 24 1 0 {4) 95 H 1
24 0 1 | 25" 0

59, A linear transformation T : F% — b iz defined as fix, ¥) = (x, * + ¥. ¥). Then
the nullity of T is :

(1 4 {2) 3
(3) 0 (4} 2
§0.  The possible sct of eigenvalues of an orthogonal skew-symmetrie matrix of order
4 x 4 is
{1) {0, 7, -l 2] (1, =1, &, =i}
2 i1, -1) 4} W =i
61. The trace and determinant of a matrix A = { are respectively 1
and -3. Tha trace of A% — A% is
(1) .l 9
3 4 [4] 0
1 1 3] (—11
62. If an eigenvector of the matrix |15 1| iz | 0 , then its corresponding
3 1 1] |1
eigenvalue 1s !
(1) G (2) 1
(4) ~2 (4} -3
JL-413-MAT—A 11 P.T.O
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63, [ R* - R? is a linear transformation defined by
flxy, xg, x3) = (X — xg, X5 — x5, X5 — xq). Il (@, b, ¢) € Ker £, then :
{1 a+b+e=0 2 g FEb=2¢
(3) s {4) @ =b#¢
1 w 0O
64, Let A = it‘.t 1 0. Consider the following statements ;
!_{] 1 «
sy Rank of A 15 maximum only when a « 2 0
(b Rank of A is ene when « = 0 or 1 or =1
o) Rank of A iz two only when o = 0
Which of the above statemenls are nof correct ?
(1)  dak {e) only (2] lal, &) only
(3 Ada) h) and (¢} {4) th), €} only
65. 1, o, ®* are cube roots of unity. Bach of o, B, v is either w or w2 If the
[1 o B
rank of the matrix | ® 1 ¥ is three, then one of the possible triplet
0 b 1]
(ct, B, ) is -
(1) {w, w, o {2) (tn, @2, )
(3} {_mg. e, u;z‘h (4) rmE, mz, !
66, Let f0 € — € be analytic except for a simple pole at z = 0 and g : € = C
be analytie on €. Then the value of E{eé‘éfj;;i;:giﬂizﬂ_ ! s :
{1 A10) (2) L0l
(3 £l 4) g0}
J1-413-MAT—A 12
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67. Let Fiz) be an cntire funetion on € such that |Fizi| < 100 for each z with

2| = 2. If B(i) = 2i, then F(1) is :

(1) any real number (2 i
(3 2 (4) 0
68, The transformation w = 22 {ransforms the lines x = 0,y = 0 and x +y = 1 into

the curves ¢y, ¢y and eg respectively. Then at w = 0 the angle between ¢ and

£, 18
% ()
! ) i
{'{3 i {1 E
(T q %_,I _3
= 3'3.*: + 1
69. The radius of convergence of the series kgl (2% + 1)! is
(1) infinity (2] 1
(3 4) =
} € (4) =
70. The coefficient of [z — 12 in the Taylor's Series expansion around 7 of
Sl ., fzEm
fle)=4%""
l—l_. ifz=mn
i
3 -1
1) 5 (2} 9
3 3 (4} 0
L )
JL-413-MAT—A 13 P.T.O
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71, Let f: € - [3i] = C be defined as flz) = Which of the following is

243
falge ?

{1) All the fixed points of / are in the region Imiz] > 0

(2) There iz ne straight line which iz mapped onto a straight line by f
i3) [ is conformal

(4} f maps cirelezs onlo cireles

(LN

72.  The power series % 2" is analytic on :
=1
(1) lze Cflz| < 1) 2) f{ze Cz] = 1)
1
(3) e G."E = |lz| < 2] (4} nowhere
1

73. For fiz) = ¢2,2 =0 is ;

(1} a removable singularity {2) a. pole of order 1

(3) an essential singularily i4 a pole of order 2
74, If w = fl2) = w + iv is an analytic funetion and P, ) is & point on the two

familics of curves ulx, y) = &, vlr, ¥) = / (& and { are eonstants), then the reciprocal

of the slope of tangent at P to wufx, v = & is :

(1) cqual to the slope of the tangent at Pro, Bl te the curve vix, y) = {

I
—

(2} negative of the slope of the tangent at Plo, p) te the curve vz, y)

Il
T

(3} reciprocal of Lhe slope of the tangent at P(o, P to the curve vix, ¥}

(4] negative of the slope of the tangent at Pli, B) to the curve wlx, ¥ = k&

1 3{:‘!22
75 — dz =
2ms e {z - 1}4
(1 0 (2)  2e®
betin -
(3) ga‘ﬂ (4)  4o2
JL-413-MAT—A 14
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76. If y;, ¥ and yy are three solutions of (D% + aD® 4+ 6D + ¢)y = 0 and determinant
(31 2 ¥
of L{ ¥y »3|=0 then
i % )
(1) oy =Hkyy +hy (20 »=0y=0
{3} ¥q = kv + iy (4) w20y 0, 3320
. pdy | |
7. The general solution of x° —;—xd‘} +a=1 g .4 =
ifx i
{1 Ax + Bx® (2) Ar + Bxalogx
(3] Ax + Blogx (4) A + Bxlogx
, . ; d?: ; 4
78.  The differential eguation d—2+5mllt +z)=sint 18 :
b
(1}  non-linear and non-homogeneous
(2 non-linear and homogeneous
(3}  Lnear and homegeneous
{4) linear and non-homogeneous
79.  All the zeros of the polynomial ap” + ap® ~ Vi Gad™ =% & e i, hitive
negative real parts. If u(t) is any solution of the differential equation
(a,D" 3 R (5 i =0, wh I]—i h lim u(t) =
anD" + @y +a; + wevenee b = 0, where 1} = .a’t’l en 1.1'_,”_”[]_
(1) a megative real number (2) a positive real number
3] a non-zero real number {4) ZETo
s0. If y' # x, a sulution of the differential eguation yiy + yf=xle + ) 18y =
{1) 1l =x — e (2) 1-x+¢°
(3 SFF ok F T : (4 1+ x + &
81. If y = xcos2x is a particular solution of ¥ + gy = —4 gin 2x, then the constant
u lakes the value :
(1) —4 (2) 4
(3y -2 (4 2
JL-413-MAT—A 15 b 1 8
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82, Which of the following pair of functions iz not a linearly independent pair of
solutions of ¥ + 9y = 0 :

L1} sindx, Bees 3y — sin Jx

(2 cos Ax, Ssiny, - 451'113_1:,

(3} 8indr + cos3x, ~Jcosx + 4cosdy

15
(1) vos 3z, Seosda — 3 Cosx

83.  If a transformation y = uv transforms flan” - 4f (e’ + gz = 0 to the form

I."J

v+ Alxw = 0, then u is equal to
; 1
(1) xf {2y f_ﬁ
— £
(3 7 (4) 2F

84 Iy = e** and Vo = xe™ gre two independent solutions of a differential equation
¥+ Qlaly’ + Rixly = 0 and Wiy, ¥s) is the Wronskian of ¥y and y,, then
[“‘r{..}’lz J'Q:'Q] (0) =

(1) 4 ] |

() 1 (4. 0
8. If ye¥dx + (2™ 1 Oyidy = difix, »b), then fix, v} =

1} & *¥g (2} o 4oyB

(30  * + & 4+ 7 (4)  y& 4 gF _ ¥

: LT LT
86, The general solution of . =¢ ENE O
dt= o
(1) Fix 4 ct) + Gix — o) {2 Flx + ¢t) + Gix + o)
(3) Fix - ef) + Flix — ¢f) (4) Fix + ¢t) + Fix — et
, , I -
87.  The one-dimensional heat equation — = e
ot

(1) elliptic (2) hyperbalic

(3 parabolic (4} mixed
JL-413-MAT—A 16
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88,

By,

90.

H1.

92

a3.

94.

Solution of the problem di_‘ﬂ

o
x, 0) 28 e Qa0
— e | REH 5

ulx, 0) = x, —-ix, 18
i1} x
3 2

5 ke
When x < L a—:’—xf-;—l—-ﬂ 12

dx dy
(1) elliptic
{3)  hyperbolic

The particular integral of the

157

(13 = &y

{32 23+ 2rdy

The complete integral of pg =
(1) ax + by = =

(3] aly 4+ Y+ gz =¢

The particular integral of (B2 = D)z = & Y

Iz! '?.1' + ¥

(L)

{3) xyeX T ¥

The complete solution of the eguation z

(1)
(3)

2=ty

2 =xv + k

t > ), —== = x < = satisfying the conditions

1380

12}

(4}

(2)
i4)

(2]
(4}

(2]
(4

(24

(4

(2}
4]

partial differential equation ﬁxE -

2
i3
parabolic
spherical
2 a2
= ‘f}—j =18(x + ¥)
iy
Ax® + 2xy)
At + 3x%y)
ax + jfiz - az =1
a’x +y —0z =¢
i ; Ny
Y ois |D=_d—z D' = ﬁl
L o dy /
Jl,i*.nx + ¥
X
X+
5 ¢
plx + 2) + gly + 3) 15 .
z=(x + 2) (y + 3)
z =alx + 2) + by + 3}

The direction cogines ol the normal to the plane Hx — y + dz = 27 are :

D 1 ; 3

\L T35 35 35
-. :F_"? =i ) _l iy 3 =
@) 35" <35 @ 435

JL-413-MAT—A
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35
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35
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95.  The perpendicular distance of the point (1, 1, —1) from the line through the point

(-3, =1, 1) whose directional ratios are (1 1oAY e

1y 8 2y 5
o N4
(3 B My 2l
! W 1|III 3

96.  The condition for the lines x = az + b, Yy =ex +dand x = a2z + by,

¥ =2z + d; to be perpendicular is :

(1} aay + bbby + 1 =10 {2) aay + oey + 1 =0
(3)  wmaq +Bby -1 =40 41 ab +ad;+1 =0
, : : ; : , _ x+d y+4 =z-8
97. If the point of intersection of the line — =7 = = and the sphere

4 —5
x2 + ;-,rz +.2% 4 2% — 10y — 23 = 0 are (0, By 11} and (o, Pa, fal, then

oy + o) + (B + ﬁg;'"i' (ry + ) =

{1 9 i) 8
3 6 (4) 10
98.  The equation of reciprocal cone of 532 + 293 72 = s

2 g o 2 2 9

() S _uE ) el g
7 2 2 i 53
A 2 2 3

(3 e N 4E (4) =+ 4% op
a 2 7 T B 2

99. II' the lines of intersection of the plane x + ¥ + 2 = 0 and the cone
ayz + bzx + cxy = 0 dre at right angles, then a + & + p =
(1} 1 (2
3 2 (4 0

100.  The vertex of the cone

i

%~ 2"+ 32% - duy + Byz — Gax + Br — 19y — 22 — 90 = 0 is

1) (2, 2 1) (20 (=1, =2, -3)
3 (1,2 3 4 (1, -2, 3
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