



# Teachingninja.in



**Latest Govt Job updates**



**Private Job updates**



**Free Mock tests available**

**Visit - [teachingninja.in](http://teachingninja.in)**

**UKPSC**  
**Forest Ranger**  
**Previous Year Paper**  
**2015 Mains Elect Engg.**



# वन इलेक्ट्राधिकारी (मुख्य) परीक्षा- 2015

No. of Printed Pages : 7

VRA- 09

2015

इलेक्ट्रिकल अभियांत्रिकी

ELECTRICAL ENGINEERING

निर्धारित समय : तीन घण्टे

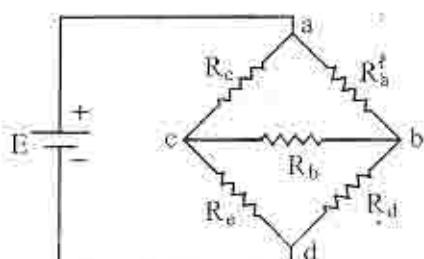
[पूर्णांक : 200

Time allowed : Three Hours

[Maximum Marks : 200

**नोट :-**

- (i) इस प्रश्न-पत्र में दो खण्ड 'अ' तथा 'ब' हैं। प्रत्येक खण्ड में चार प्रश्न हैं। किन्हीं पाँच प्रश्नों के उत्तर दीजिए, प्रत्येक खण्ड से कम से कम दो प्रश्न अवश्य होना चाहिये।
- (ii) सभी प्रश्नों के अंक समान हैं।
- (iii) एक प्रश्न के सभी भागों का उत्तर अनिवार्यतः एक साथ दिया जाता।
- (iv) नॉन-प्रोग्रामेबल कैलकुलेटर अनुमत्य है।


**Note :-**

- (i) This question paper has two sections 'A' and 'B'. Every section has four questions, attempt any five questions. At least two questions should be attempted from every section.
- (ii) All questions carry equal marks.
- (iii) All the parts of a question must be answered together.
- (iv) Non-programmable calculator is allowed.

खण्ड - 'अ'

## SECTION - 'A'

1. (अ) दिये गये परिपथ चित्र-1 (अ) में  $R_a = 20 \Omega$ ,  $R_b = 30 \Omega$ ,  $R_c = 50 \Omega$ ,  $R_d = 24 \Omega$  तथा  $R_e = 5 \Omega$  हैं। सप्लाई द्वारा तंत्र को दिये जा रहे निर्गत धारा का मान निकालें। मान लिजिए  $E = 220 \text{ V}$ . 20



चित्र 1 (अ)

(व) एक परिपथ में  $10\ \Omega$  का प्रतिरोध,  $1\ \mu\text{F}$  का संधारित्र एवं  $1\ \text{H}$  का प्रेरकत्व श्रेणीक्रम में जुड़े हुये हैं। परिपथ में परिवर्तनीय आवृत्ति वाला  $100\ \text{V}$  का स्रोत लगाया जाता है। उस आवृत्ति या उन आवृत्तियों का मान ज्ञात कीजिए जिस पर परिपथ में शक्ति क्षय अनुनाद की स्थिति की तुलना में  $10\%$  होगा। 20

(a) In the circuit of given fig. 1(a),  $R_a = 20\ \Omega$ ,  $R_b = 30\ \Omega$ ,  $R_c = 50\ \Omega$ ,  $R_d = 24\ \Omega$  and  $R_e = 5\ \Omega$ . Find the current delivered by the source to network. Assume that  $E = 220\ \text{V}$ .

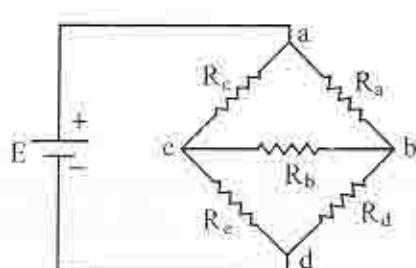
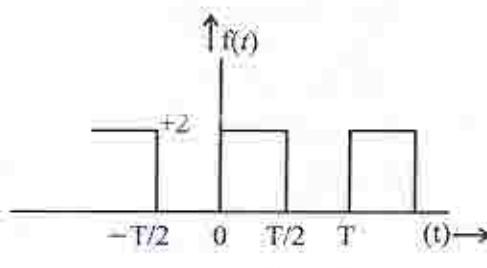



Fig 1 (a)

(b) A circuit is made of a  $10\ \Omega$  resistance,  $1\ \mu\text{F}$  capacitance and  $1\ \text{H}$  inductance all connected in series. A voltage of  $100\ \text{V}$  at varying frequencies is applied to the circuit. Find the frequency or frequencies at which the circuit would consume only  $10\%$  of the power it consumed at resonance.

2. (अ) मुक्त धन में विद्युत क्षेत्र तोन्त्रता का एकस्तीय प्लेन तरंग निम्न है :


$$\vec{E} = 94.25 \cos(\omega t + 6z) \vec{a}_z \text{ V/m}$$

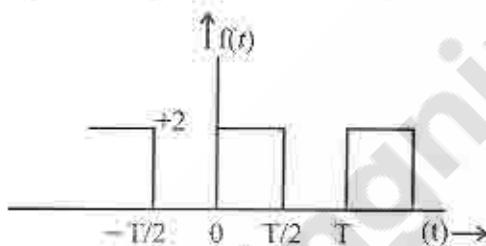
ज्ञात कीजिए-

- स्वरण की गति
- तरंग की आवृत्ति
- तरंगदैर्घ्य
- चुम्बकीय क्षेत्र की तोन्त्रता एवं
- माध्यम में औसत शक्ति का घनत्व

20

(ब) दिये गये चित्र में वर्गाकार तरंग को प्रदर्शित किया गया है जिसका  $0$  से  $T/2$  परास के लिए  $f(t) = 2$  तथा  $T/2$  से  $T$  परास के  $f(t) = 0$  मान है। दिये तरंग का फॉरियर श्रेणी प्राप्त कीजिए। 20




(a) The electric field intensity of a uniform plane wave in free space is given by

$$\vec{E} = 94.25 \cos(\omega t + 6z) \hat{a}_x \text{ V/m.}$$

Determine

- the velocities of propagation
- the wave frequency
- the wave length
- the magnetic field intensity and
- the average power density in the medium.

(b) Fig. shows a square wave that is described through the range from 0 to  $T/2$  by  $f(t) = 2$  and through the range from  $T/2$  to  $T$  by  $f(t) = 0$ . Find its Fourier Series.



3. (अ) (i) उपयुक्त चित्र सहित डायोड परिपथ को कर्तन (क्लिपर) परिपथ व ग्रामी (क्लैम्पर) परिपथ के प्रयोग हेतु संक्षेप में वर्णन करें। 10

(ii) डिफरेन्शियल एम्प्लीफायर का परिपथ आरेख खींचिए तथा बोल्टता लब्धि, निवेश प्रतिवाधा व उपयनिष्ठ विधा लब्धि (कॉमन मोड गेन) के व्यंजक को निकालिए। 10

(ब) बोल्टेज स्रोत इन्वर्टर (VSI) तथा धारा स्रोत इन्वर्टर (CSI) में अन्तर की व्याख्या करें।

एक 3- $\phi$ ,  $180^\circ$  मोड VSI जिसके साथ एक स्टार-संबद्ध प्रतिरोधी भार जुड़ा है के लिए, भार धारा के rms मान तथा भार शक्ति का व्यंजक व्युत्पन्न कीजिए। 20

(a) (i) Explain briefly diode circuit as clipping circuit and clamping circuit with suitable diagram.  
(ii) Draw the circuit diagram of a differential amplifier. Derive expression for voltage gain, input impedance and common mode gain.

(b) Explain the difference in Voltage Source Inverter (VSI) and Current Source Inverter (CSI).

For a 3- $\phi$ ,  $180^\circ$  mode, VSI with a balanced star-connected resistive load, derive the expression for rms value of load current and load power.

4. (अ) (i) एक कम्पाउन्ड डी.सी. जनिन्व 120 A का भार 120 V पर प्रदान कर रहा है। शॉट फील्ड, श्रेणीक्रम में जुड़ा फील्ड तथा आर्मेचर के प्रतिरोध क्रमशः 30  $\Omega$ , 0.05  $\Omega$  व 0.1  $\Omega$  हैं। निम्न में जनरेटेड वोल्टेज ज्ञात कीजिए : लांग शन्ट कनेक्शन तथा शॉट शन्ट कनेक्शन 10

(ii) एक 550 V, 55 kVA, एकल-कला प्रत्यावर्तीन का प्रभावी प्रतिरोध 0.2  $\Omega$  है। लघु परिपथ पर 10 A की फील्ड धारा 200 A की आर्मेचर धारा उत्पन्न करती है एवं खुले परिपथ पर 450 V का विवाद उत्पन्न करती है। (i) तुल्यकालिक प्रतिधात (ii) शक्ति गुणांक 0.8 पश्चात्यामी पर पूर्ण-धारा नियमन का परिकलन कीजिए। 10

(ब) (i) दिये हुये बूलीयन अभिव्यक्ति को कार्नो में एवं बूलीयन बीनगणित द्वारा न्यूनतम करें।

$$X = A'B'C'D' + AB'C'D' + AB'CD' + A'B'CD' \quad 10$$

(ii) चित्र की सहायता से आयाम माइलन, माइलन गुणांक तथा प्रतिशत माइलन की व्याख्या कीजिए। 10

(a) (i) A compound dc generator is supplying a load of 120 A at 120 V. The shunt field, series field and armature resistance are 30  $\Omega$ , 0.05  $\Omega$  and 0.1  $\Omega$  respectively. Find the generated voltage in long shunt and short shunt connection.

(ii) A 550 V, 55 kVA, single-phase alternator has effective resistance of 0.2  $\Omega$ . A field current of 10 A produces an armature current of 200 A on short circuit and an emf of 450 V on open circuit. Calculate (i) the synchronous reactance and (ii) the full-load regulation at power factor 0.8 lagging.

(b) (i) Minimize the following Boolean expression using Karnaugh Map and also with Boolean algebra.

$$X = A'B'C'D' + AB'C'D' + AB'CD' + A'B'CD' \quad 10$$

(ii) Explain amplitude modulation, modulation index and percent modulation with the help of figure.

SECTION – ‘B’

5. (a) एक इकाई पुनर्निवेशित तंत्र का खुला लूप अन्तरण फलन है  $G(S) = \frac{4}{S(S+1)}$

इकाई स्टेप निवारण के लिए बंद तंत्रकी अनुक्रिया के व्यवहार का निवारण कीजिए तथा उत्थान काल, शिखर समय, शिखर अतिक्रमण तथा सेटलिंग समय निकालिए।

20

(b) अवकल समीकरण  $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = 6u$

द्वारा मिस्रित निकाय का स्टेट-स्पेस निरूपण प्राप्त कीजिए। यहाँ पर  $y$  आउटपुट तथा  $u$  इनपुट है एवं स्टेट मॉडल का खंड आरख निरूपण भी दर्शाएं।

20

(a) The open loop transfer function of a unity feedback system is  $G(S) = \frac{4}{S(S+1)}$

Determine the nature of response of the closed loop system for a unit step input. Also determine the rise time, peak time, peak overshoot and settling time.

(b) Consider the system represented by the differential equation :

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = 6u$$

Where  $y$  is the output and  $u$  is the input. Obtain the state-space representation of the system. Also give the block diagram representation of the state model.

6. (a) 8085 माइक्रोप्रोसेसर के इन्स्ट्रक्शन साइकिल के विभिन्न सोपानों (steps) का उपयुक्त उदाहरण के साथ व्याख्या कीजिए।

20

(b) (i) एक स्थायी चुम्बकीय चल कुण्डली (PMMC) मापक यंत्र के निर्माण व कार्यविधि के सिद्धान्त का वर्णन कीजिए। यदि यंत्र स्प्रिंग नियंत्रित है, तो विक्षेपण का समीकरण निकालिए।

15

(ii) एक चल-कुण्डली उपकरण 25 mA पर पूर्ण स्केल विक्षेप देता है। कुण्डलन का प्रतिरोध  $5 \Omega$  है। मीटर द्वारा 5A पढ़ने के लिए मोटर के शंट में लगाये जाने वाले प्रतिरोध का मान ज्ञात कीजिए।

5

(a) Mention and explain the various steps involved in an instruction cycle of 8085 Microprocessor with suitable example.

(b) (i) Describe the construction and working principle of PMMC instruments. Derive the equation for deflection if instrument is spring controlled.

(ii) A moving coil instrument gives full scale deflection with 25 mA. The resistance of the coil is  $5 \Omega$ . Find the resistance of the shunt to be connected in parallel with the meter to read 5A.

7. (अ) एक  $0.1$  m लम्बी व  $4 \text{ cm}^2$  अनुप्रस्थ काट वाले स्टील बीम पर एक स्ट्रैन गेज की वाइग की जाती है। स्टील का यंग माइलस  $207 \text{ GN/m}^2$  है। तनाव रहित स्थिति में स्ट्रैन गेज का प्रतिरोध  $240 \Omega$  है व गेज गुणांक  $2.2$  है। जब इस पर एक भार लगाया जाता है तो प्रतिरोध में  $0.013 \Omega$  का परिवर्तन होता है। स्टील बीम की लम्बाई में परिवर्तन तथा इस पर लगाये बल की गणना कीजिए। 20

(ब) प्रेरकत्व मापन के है-बिज की कार्यविधि को व्याख्या कीजिए। सतुलन की स्थिति में समीकरण व कलोय आरेख को प्रदर्शित कीजिए। 20

(a) A strain gauge is bonded to a beam  $0.1$  m long and has a cross-sectional area  $4 \text{ cm}^2$ . Young modulus for steel is  $207 \text{ GN/m}^2$ . The strain gauge has an unstrained resistance of  $240 \Omega$  and a gauge factor of  $2.2$ . When a load is applied, the resistance of gauge changes by  $0.013 \Omega$ . Calculate the change in length of the steel beam and the amount of force applied to the beam.

(b) Describe the working of Hay's bridge for measurement of inductance. Derive the equations for balance and draw the phasor diagram under condition of balance.

8. (अ) (i) एक समान निर्देश वेक्टर से निर्देशित कला a, b एवं c में लाइन धाराएँ क्रमशः  $500 + j 150$ ,  $100 - j 600$  एवं  $-300 + j 600$  एम्पियर हैं। धाराओं के सममित घटक ज्ञात कीजिए। 10

(ii) पल्स कोड माइलेशन की कार्यविधि को समझाइए तथा इसकी गुण व उपयोगिता पर प्रकाश डालें। 10

(ब) (i) एक प्रेषण लाइन, जिसकी प्रतिवाधि  $(r + jX)$  है, के दोनों सिरों पर समान चोलटा लगाकर उसमें से शक्ति प्रेषित की जा रही है। प्रदर्शित करें कि  $X = \sqrt{3}r$  की स्थिति में स्थायी अवस्था में अधिकतम शक्ति स्थानान्तरित होगी। 10

(ii) आवर करेन्ट रिले के कार्य सिद्धान्त को समझाइए तथा इसके संचालन समय के आधार पर रिले का वर्गीकरण करते हुए व्याख्या कीजिए। 10

(a) (i) The line currents in amperes in phases a, b and c respectively are  $500 + j 150$ ,  $100 - j 600$  and  $-300 + j 600$  referred to the same reference vector. Find the symmetrical components of currents.

(ii) Describe Pulse Code Modulation (PCM) and write it's merits & application.

(b) (i) Power is being transmitted through a transmission line of impedance  $(r + jX)$ , at equal voltage at both ends. Show that maximum power can be transmitted under steady state operating condition when  $X = \sqrt{3}r$ .

(ii) Explain the working principle of over current relay and depending upon the time of operation. Explain various categories of relays.



**VRA-09**

**8**