

- **Latest Govt Job updates**
- Private Job updates
- Free Mock tests available

Visit - teachingninja.in

# **MPPSC**

Previous Year Paper Assistant Professor Statistics

# मध्यप्रदेश लोक सेवा आयोग रेसीडेन्सी एरिया इन्दौर

क्रमांक : 169/69/2011/प-9

इन्दौर, दिनांक-13.07.2018

अंतिम उत्तर कुंजी

-: विज्ञप्ति ::-

सहायक प्राध्यापक परीक्षा—2017 के संदर्भ में आयोग द्वारा जारी विज्ञप्ति क्रमांक 120/69/2011/प—9 दिनांक 30.06.2018 के अंतर्गत प्रावधिक उत्तर कुंजी परीक्षा परिणाम बनाने के पूर्व आयोग की वेबसाईट पर प्रकाशित की गई थी। अभ्यर्थियों से प्राप्त ऑनलाईन आपित्तियों का विषय विशेषज्ञों द्वारा परीक्षण किया गया तथा समस्त ऑनलाईन आपित्तियों का सूक्ष्म परीक्षण करने के पश्चात विषय—सांख्यिकी प्रश्न पत्र की अनुशंसित संशोधित अंतिम उत्तर कुंजी बनाई गई है। यह अंतिम उत्तर कुंजी है। इस अंतिम उत्तर कुंजी के आधार पर परीक्षा परिणाम तैयार किया जायेगा। अतः अब इस संबंध में अभ्यार्थियों की किसी प्रकार की आपित्तियों/अभ्यावेदनो पर विचार नहीं किया जायेगा। अभ्यर्थी आयोग की वेबसाईट पर अपना रोल नंबर एवं प्रवेश पत्र पर दिये गये पासवर्ड की सहायता से लॉग—इन कर अपनी रिस्पांस शीट का अवलोकन कर सकते हैं। यह विज्ञप्ति आयोग की वेबसाईट www.mppsc.nic.in, www.mppsc.com & www.mppscdemo.in पर दिनांक 13.07.2018 से उपलब्ध है।

(डॉ. पी.सी. यादव ) परीक्षा नियंत्रक

#### Assistant Professor Exam - 2017

## (Final Answer Key)

## Statistics

| Q.No: : | Let X be a random variable whose probability density function is $f(x) = \begin{cases} 1 \ ; \ 0 \le x \le 1 \\ 0 \ ; \ other wise \end{cases}$ Then $P_r(X = 1)$ is | माना $x$ एक याष्ट्रन्छिक चर है जिसका प्रायिकता घनत्व फलन है $f(x) = \begin{cases} 1 \;;\; 0 \leq x \leq 1 \\ 0 \;;\;\;\;\;\;$ अन्यथा तो $P_r(x=1)$ का मान है: |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A       | 1                                                                                                                                                                    | 1                                                                                                                                                             |
| В       | 0                                                                                                                                                                    | •                                                                                                                                                             |
| C       | 1/2                                                                                                                                                                  | 1/2                                                                                                                                                           |
| D       | 3/4                                                                                                                                                                  | 3/4                                                                                                                                                           |

| Q.No: | 2 The standard deviation of a binomial distribution with | n parameters n= 16 and p= 1/4 is: एक द्विपद बंटन जिसके | र प्राचल हैं n=16 तथा p=1/4 उसका मानक विचलन है: |
|-------|----------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|
| A     | 3                                                        | 3                                                      |                                                 |
| В     | 4                                                        | 0.4                                                    |                                                 |
| c     | $\sqrt{3}$                                               | $\sqrt{3}$                                             |                                                 |
| D     | 2                                                        | 2                                                      |                                                 |

| Q.No: 3 | An unbi-ased coin is tossed 6 times and it gives 4 'heads'. What is the probability of getting 'head' in seventh toss? | एक अनिधनत सिक्का 6 बार उखाला जाता है तथा 4 बार 'चित' आता है। सातवीं उखाल में 'चित' आने की<br>प्रायिकता क्या है ? |
|---------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| A       | 1/2                                                                                                                    | 1/2                                                                                                              |
| 3       | 3/7                                                                                                                    | 3/7                                                                                                              |
| 3       | 4/7                                                                                                                    | 4/7                                                                                                              |
| )       | 5/7                                                                                                                    | 5/7                                                                                                              |

Q.No: 4 If A and B are mutually exclusive events and  $P(A \cup B) \neq 0$ , then which one of the यदि A तथा B. परस्पर अपवर्जी घटनायें हैं तथा  $P(A \cup B) \neq 0$ , तो निम्न में कौन सत्य है ? following is true?

A



|   | $P(A/A \cup B) = \frac{P(A)}{P(A) + P(B)}$   | $P(A/A \cup B) = \frac{P(A)}{P(A) + P(B)}$   |
|---|----------------------------------------------|----------------------------------------------|
| В | $P(A/A \cup B) \le \frac{P(A)}{P(A) + P(B)}$ | $P(A/A \cup B) \le \frac{P(A)}{P(A) + P(B)}$ |
| С | $P(A/A \cup B) \ge \frac{P(A)}{P(A) + P(B)}$ | $P(A/A \cup B) \ge \frac{P(A)}{P(A) + P(B)}$ |
| Ď | $P(A/A \cup B) = \frac{P(A)}{P(A) - P(B)}$   | $P(A/A \cup B) = \frac{P(A)}{P(A) - P(B)}$   |

| Q.No: 5 | A random variable ${\bf X}$ has a normal distribution. Its moment generating function about origin is | एक याट्टव्छिक वर X का बेंटन प्रसामान्य हैं। इसका आधूर्ण जनक फलन शून्य के सापेक्ष हैं |
|---------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
|         | $M_{\chi}(t) = \exp{\left[2t + 32t^2\right]}.$ Its fourth central moment is                           | $M_\chi(t) = \exp\left[2t + 32t^2\right]$ . तों इसका चतुर्थ केन्द्रीय आधूर्ण हैं:    |
| A       | 4096                                                                                                  | 4096                                                                                 |
| В       | 10096                                                                                                 | 10096                                                                                |
| C       | 11288                                                                                                 | 11288                                                                                |
| D       | 12288                                                                                                 | 12288                                                                                |

| Q.No: 6 | If for a binomial distribution $b(n,p)$ , $P(x=0) = P(x=1)$ then coefficient of variation is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | यदि द्विपद बंटन $b(n,p)$ , के लिये $P(x=0) = P(x=1)$ है तो बिचरण गुणांक है: |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Α       | in the second se |                                                                             |
| В       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                             |
| С       | Np                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Np                                                                          |
| D       | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                                                           |

The random variable X has the cumulative distribution function 
$$0 ; x \leq a$$

$$0, x \leq a$$

$$x \leq b$$

$$1 ; x \geq b$$
If  $a = -3$  and  $b = 4$  the probability that  $|X| \leq 1/2$  is:

A 1/3
B 1/5

The random variable X has the cumulative distribution function 
$$0 ; x \leq a$$

$$x \leq b$$

$$x \leq a$$

$$x = a$$

$$x =$$

| C | 1/7 | 1/7 | - 7 |
|---|-----|-----|-----|
| D | 1/9 | 1/9 |     |

| Q.No; 8 | Let X be a random variable whose probability density function is $\mathbf{f}(\mathbf{x}) = \theta  \exp(-\theta  \mathbf{x})  ;  0 < x < \infty, \theta > 0. \text{ the value of E}(\mathbf{X}^2)  \mathbf{is} :$ | माना $	imes$ एक याट्टान्किक चर है जिसका प्रायिकता घनल फलन है $f(x)=	heta\exp(-	heta x)$ ; $0< x<\infty$ , $	heta>0$ तब $E(X^2)$ का मान है: |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Δ       | $\frac{1}{\overline{\theta}}$                                                                                                                                                                                     | $\frac{1}{\theta}$                                                                                                                         |
| В       | $\frac{1}{\theta^2}$                                                                                                                                                                                              | $\frac{1}{\theta^2}$                                                                                                                       |
| С       | $\frac{1}{\theta} + \frac{1}{\theta^2}$                                                                                                                                                                           | $\frac{1}{\theta} + \frac{1}{\theta^2}$                                                                                                    |
| D       | $\frac{2}{\theta^2}$                                                                                                                                                                                              | $\frac{2}{\theta^2}$                                                                                                                       |

| Q.No: 9 | The probability density function of a random variable X is $f(x) = \begin{cases} \exp(-x), & x>0\\ 0, & otherwise \end{cases}$ Then the probability density function of $y=+\sqrt{x}$ is | एक यादृष्टिक वर का प्रायिकता घनल फलन $x$ है $f(x) = \begin{cases} \exp(-x), & x > 0 \\ 0, & otherwise \end{cases}$ तो $y = +\sqrt{x}$ का प्रायिकता घनल फलन है: |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | ye <sup>-y</sup>                                                                                                                                                                         | ye <sup>-y</sup>                                                                                                                                               |
| 3       | y <sup>2</sup> e <sup>-y<sup>2</sup></sup>                                                                                                                                               | y <sup>2</sup> e <sup>-y<sup>2</sup></sup>                                                                                                                     |
|         | ye-y²                                                                                                                                                                                    | ye <sup>·y²</sup>                                                                                                                                              |
| ,       | 2ye <sup>-y²</sup>                                                                                                                                                                       | 2ye-y <sup>2</sup>                                                                                                                                             |

| Q.No: | that this integer is divisible by 6 and 8 is: | विभाजन होने की प्राधिकता है: |
|-------|-----------------------------------------------|------------------------------|
| A     | 0.04                                          | 0.04                         |
| В     | 0.08                                          | 0.08                         |
| С     | 0.25                                          | 0.25                         |
| D     | 0.50                                          | 0.50                         |

| Q.No: 1 | If the probability density function of a normal distribution is proportional to $\frac{1}{exp}\left[\frac{-x^2}{4}+5x\right], \text{ then its mean is}$ | यदि प्रसामान्य बंटन का प्राधिकता घनल फलन $exp\left[\frac{-x^2}{4}+5x\right]$ के समानुपाती हों तो इसके माध्य का मान है: |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| A       | 0                                                                                                                                                       | 0                                                                                                                      |
| В       | 5                                                                                                                                                       | 5                                                                                                                      |
| C       | 10                                                                                                                                                      | 10                                                                                                                     |
| D       | 2                                                                                                                                                       | 2                                                                                                                      |

Q.No: 12 Let X follows a binomial distribution b(2,p), Y follows binomial distribution b(5,p) and यदि X का बंटन हिपद b(2,p), Y का बंटन , हिपद b(5,p) तथा  $P(X \ge 1) = 5/4$ , ती  $P(Y \ge 1)$  का मान  $P(X \ge 1) = 5/4$ , then value of  $P(X \ge 1)$  is

| D | None of these                            | इनमें से कोई नहीं |  |
|---|------------------------------------------|-------------------|--|
| C | 112/243                                  | 112/243           |  |
| В | 211/243                                  | 211/243           |  |
| A | 32/243                                   | 32/243            |  |
|   | F(A ≥ 1) = 3/4, then value of F(1 ≥ 1/13 | 9.                |  |

If X and Y are independent Poisson Variables such that

Q.No: 13 P(X=2)=P(X=3)
P(Y=3)=P(Y=4)
P(Y=4)=P(Y=4)
P(Y=4

Q.No: 14 If X and Y are two independent random variables with probability density function respectively

यदि 🗙 तथा 🕆 दो स्वतंत्र याष्ट्रन्छिक चर हैं। जिनके प्रायिकता घनल फलन क्रमश: हैं:



|   | $\begin{split} f(x) &= \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-x^2}{2}\right); \ -\infty < x < \infty \\ f(y) &= \frac{1}{\sqrt{2\pi}} \exp\left[-\frac{1}{8} \left(y-3\right)^2\right]; \ -\infty < y < \infty \end{split}$ Then, variance of random variable (X-Y) is: |    |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Α | 2                                                                                                                                                                                                                                                                       | ,2 |
| В | 4                                                                                                                                                                                                                                                                       | 4  |
| C | 5                                                                                                                                                                                                                                                                       | 5  |
| D | 7                                                                                                                                                                                                                                                                       | J  |
|   |                                                                                                                                                                                                                                                                         |    |

| Q.No: 15 | The mean of ten observations is 10 and standard deviation is $\mbox{\it Zero}$ . The median of these observations is | दस समंकों का माध्य 10 है तथा मानक विचलन शून्य है। इनकी माध्यिका का मान है: |
|----------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| A        | 8                                                                                                                    | 8                                                                          |
| В        | 10                                                                                                                   | 10                                                                         |
| С        | 11                                                                                                                   | 11                                                                         |
| D        | 9                                                                                                                    | 9                                                                          |

| Q.No: 16 | If the correlation coefficient between X and Y is r, correlation coefficient between 4X and -4Y is: | यदि $\times$ तथा $Y$ के बीच सहसम्बंध गुणांक $r$ है तो $4\times$ तथा $-4Y$ के बीच सहसम्बंध गुणांक है: |
|----------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| A        | r                                                                                                   | •                                                                                                    |
| В        | 4r                                                                                                  | 4r                                                                                                   |
| С        | -4r                                                                                                 | -4r                                                                                                  |
| D        | or .                                                                                                | *                                                                                                    |

| Q.No: | L7 Which of the following statements is wrong?       | निम्न में कौन सा कथन गलत हैं ?          |  |
|-------|------------------------------------------------------|-----------------------------------------|--|
| A     | $\beta_1$ gives a measure of departure from symmetry | $\beta_1$ सममित से दूरी की माप देता है। |  |
| В     | $\beta_2$ gives a measure of departure from symmetry | $eta_2$ सममित से दूरी की माप देता है।   |  |
| С     | $\beta_2$ gives a measure of peakedness              | β2 कुकुदता की माप देता है।              |  |
| D     | $\beta_2 > \beta_1$                                  | $\beta_2 > \beta_1$                     |  |

Q.No: 18 The rank correlation coefficient between the marks in Statistics and Mathematics

किसी वर्ग के छात्रों द्वारा सांख्यिकी तथा गणित में प्राप्त किये गये अंको के बीच कोटि सहसम्बन्ध गुणांक 0.8 है।



|   | obtained by a group of students is 0.8. If sum of squares of difference in ranks is given to be 33, the number of students in the group is | यदि कोटियों में अन्तर के वर्गों का योग 33 है तो वर्ग में छात्रों की संख्या है: |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| A | 10                                                                                                                                         | 10                                                                             |
| В | 25                                                                                                                                         | 25                                                                             |
| C | 100                                                                                                                                        | 100                                                                            |
| D | 500                                                                                                                                        | 500                                                                            |

| Q.No: : | When all the observations are multiplied by k, then variance is doubled. The value of k is | जब समस्त प्रेक्षकों को k से गुणा कर दिया जाता है, तो उनका प्रसरण दुगना हो जाता है। k का मान |
|---------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 4       | 1/2                                                                                        | 1/2                                                                                         |
| В       | 1/√2                                                                                       | $1/\sqrt{2}$                                                                                |
| c       | $\sqrt{2}$                                                                                 | $\sqrt{2}$                                                                                  |
| D       | 2                                                                                          | 2                                                                                           |

| Q.No: | 20 Which of the following statements is not true? | निम्न कथनों में कौन सा कथन सत्य नहीं हैं ? |
|-------|---------------------------------------------------|--------------------------------------------|
| À     | $r_{yx}^2 \le 1$                                  | $r_{yx}^2 \le 1$                           |
| В     | $b_{yx} b_{xy} \le 1$                             | $b_{yx} b_{xy} \le 1$                      |
| c     | $b_{xy} = -1.5, b_{yx} = -0.9$                    | $b_{xy} = -1.5, b_{yx} = -0.9$             |
| D     | $b_{yx} = 2, b_{xy} = \frac{1}{3}$                | $b_{yx} = 2, b_{xy} = \frac{1}{3}$         |

| Q.No: 21 | If 20x - 9y = 107 and 4x - 5y + 32 = 0 are two regression lines then correlation coefficient between x and y is | यदि 20x - 9y = 107 तथा 4x - 5y + 32 = 0 वो समाश्रयण रेखायें है तो उनके बीच का सहसम्बन्ध<br>गुणांक है: |
|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| A        | 4/5                                                                                                             | 4/5                                                                                                   |
| В        | 3/5                                                                                                             | 3/5                                                                                                   |
| С        | 9/20                                                                                                            | 9/20                                                                                                  |
| D        | None of these                                                                                                   | कोई सही नहीं है                                                                                       |

Q.No: 22 If V(X-Y) > V(X+Y), then correlation coefficient  $r_{XY}$  between X and Y is

यदि V(X-Y)>V(X+Y) तो X तथा Y के बीच सहसम्बन्ध गुणांक  $r_{XY}$  है:



| Α | r <sub>XY</sub> = 0 | r <sub>XY</sub> = 0 |  |
|---|---------------------|---------------------|--|
| В | r <sub>XY</sub> = 1 | r <sub>XY</sub> = 1 |  |
| С | r <sub>XY</sub> > 0 | r <sub>XY</sub> > 0 |  |
| D | r <sub>XY</sub> < 0 | r <sub>XY</sub> < 0 |  |

| Q.No: | 23 If $\sigma_x$ = 0.5 , $\sigma_y$ = 1.5 and $\sigma^2_{(x-y)}$ = 1.25; correlation coefficient between x and y is | यदि $\sigma_x$ = 0.5, $\sigma_y$ = 1.5 तथा $\sigma^2_{(x-y)}$ = 1.25 तो $x$ तथा $y$ के बीच सहसम्बन्ध गुणांक है: |
|-------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| A     | 5/6                                                                                                                 | 5/6                                                                                                             |
| В     | 1/2                                                                                                                 | 1/2                                                                                                             |
| С     | 1/4                                                                                                                 | 1/4                                                                                                             |
| D     | 0                                                                                                                   | 0                                                                                                               |

| Duestion | Deleted                                      |                                            |
|----------|----------------------------------------------|--------------------------------------------|
| •        | All of these                                 | सभी सही है                                 |
| 2        | Always Negative                              | सदैव ऋणात्मक                               |
| 3        | Zero                                         | शून्य                                      |
| A        | Always Positive                              | सदैव धनात्मक                               |
| Q.No: 24 | The sum of deviations taken from median is : | माध्यिक से लिये गये विचलनों का योग होता है |

|    | If each value of $\boldsymbol{X}$ is halved and that of $\boldsymbol{Y}$ is doubled regression coefficient of $\boldsymbol{X}$ and $\boldsymbol{y}$ becomes | यदि $x$ के सभी मान आधे कर दिये जाते है तथा $Y$ के सभी मान दो गुने कर दिये जाते हैं तो $X$ पर $Y$ का समाश्रयण गुणांक हो जाता है: |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| A  | Unchanged                                                                                                                                                   | अपरिवर्तित                                                                                                                      |
| В  | Halved                                                                                                                                                      | आधा                                                                                                                             |
| C. | Doubled                                                                                                                                                     | दो गुना                                                                                                                         |
| D  | None of these                                                                                                                                               | इनमें से कोई नहीं                                                                                                               |

| Q.No: 26 | If y=mx+4 and x=4y+5 are regression lines of y on x and x on y respectively, the value of m is between | यदि y पर x तथा x पर y की समाश्रयण रेखायें क्रमश: y=mx+4 तथा x=4y+5 है, तो m का मान है: |
|----------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| А        | 0 and 1                                                                                                | 0 तथा 1 के बीच                                                                         |
| В        | 0 and 1/2                                                                                              | 0 तथा 1/2 के बीच                                                                       |

| c        | 0 and 1/4                                                                                                                                                                              | 0 तथा 1/4 के बीच                                                                                                                                                   |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D        | None of these                                                                                                                                                                          | इनमें से कोई नहीं                                                                                                                                                  |
| Q.No: 27 | The sum of the squares of the deviations of a set of values is minimum when deviations are taken about                                                                                 | किसी समूह के विचलनों के वर्ग का योग तब न्यूनतम होता है जब विचलन निम्न मापों में से किसके सापक्ष लिये<br>जाते हैं ?                                                 |
| A        | Arithmetic Mean                                                                                                                                                                        | समानान्तर माध्य                                                                                                                                                    |
| В        | Harmonic Mean                                                                                                                                                                          | इरात्मक माध्य                                                                                                                                                      |
| C        | Geometric Mean                                                                                                                                                                         | गुणोत्तर माध्य                                                                                                                                                     |
| Ď        | Median                                                                                                                                                                                 | माथिका                                                                                                                                                             |
| Q.No: 28 | A person drives his scooter from his home to his office at a speed of 30km per hour and back from the office to his house at 20km per hour, then the average speed is (in km per hour) | एक व्यक्ति अपना स्कूटर अपने घर से अपने कार्यालय तक 30 कि.मी प्रति घंटे की रफतार से जाता हैं, तथा<br>वापस 20 कि.मी प्रति घंटे की रफतार से आता है। उसकी औसत गति हैं: |
| A        | 23                                                                                                                                                                                     | 23                                                                                                                                                                 |
| В        | 24                                                                                                                                                                                     | 24                                                                                                                                                                 |
| C        | 25                                                                                                                                                                                     | 25                                                                                                                                                                 |
| D.       | 26                                                                                                                                                                                     | 26                                                                                                                                                                 |
| Q.No; 29 | A bag contains 5 black and 4 white balls, A man selects two balls at random. The probability that both these are of same colour is                                                     | एक थैले में 5 काली तथा 4 सफेद गैंदे हैं । एक व्यक्ति याहन्छिक, रूप से दो गैंदे निकालता है । वे दोनों गैंदे ए<br>ही रंग की हैं, इसकी प्राधिकता होगी :               |
| A        | 1/6                                                                                                                                                                                    | 1/6                                                                                                                                                                |
| В        | 5/108                                                                                                                                                                                  | 5/108                                                                                                                                                              |
| C        | 4/9                                                                                                                                                                                    | 4/9                                                                                                                                                                |
| D        | 5/18                                                                                                                                                                                   | 5/18                                                                                                                                                               |
| Q.No: 30 | For the grouped data having equal width h for each class interval Sheppard's corrected $\mu_3$ equals to                                                                               | वर्गीकृत आकड़ों में जहाँ कक्षा अन्तराल सभी कक्षाओं में एक समान h हैं, 'श्रैपर्ड करेक्शन' लगाने के बाद सही<br>तृतीय केन्द्रीय आधूर्ण का मान होगा :                  |
| A        | $\mu_3 - \frac{h^2}{12}$                                                                                                                                                               | $\mu_3 - \frac{h^2}{12}$                                                                                                                                           |

$$\begin{array}{c} c \\ \mu_3 + \frac{h^2}{12} \\ \mu_3 - \frac{h^2 - \mu_2}{2} \end{array} \qquad \qquad \begin{array}{c} \mu_3 + \frac{h^2}{12} \\ \mu_3 - \frac{h^2 - \mu_2}{2} \end{array}$$

| Q.No: 3: | If arithmetic mean, median and mode of a distribution are same and their value is 7, the values of its 5th decile should be | यदि एक बेंटन के समानान्तर माध्य, माध्यिका तथा बहुलक समान हो तथा उनका मान 7 है, तो 5 वें दशांक का<br>मान होना चाहिये: |
|----------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| A        | 7                                                                                                                           | 7                                                                                                                    |
| В        | 12                                                                                                                          | 12                                                                                                                   |
| С        | 35                                                                                                                          | 35                                                                                                                   |
| D        | None of these                                                                                                               | इनमें से कोई नहीं                                                                                                    |

| Q.No: | 32 If X follows N(0,1) and $Y = \begin{cases} 1 & \text{if } X > 0 \\ -1 & \text{if } X \leq 0 \end{cases}$ | यदि $	imes$ का बंदन N(0,1) तथा $Y=egin{cases} 1$ यदि $x>0 \ -1$ यदि $x\leq 0$ |
|-------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|       | Then E(Y) is equal to                                                                                       | तो E(Y) का मान है                                                             |
| A     | 1                                                                                                           | 1                                                                             |
| В     | 1/2                                                                                                         | 1/2                                                                           |
| C     | Zero                                                                                                        | शून्य                                                                         |
| D     | None of these                                                                                               | इनमें से कोई नहीं                                                             |
|       |                                                                                                             |                                                                               |

| C<br>D   | -6/13<br>None of these                                                                                                                                                                                                             | -6/ 13<br>इनमें से कोई नहीं                                                                                                              |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| В        | 0                                                                                                                                                                                                                                  | 0                                                                                                                                        |
| A        | $\sqrt{2}$                                                                                                                                                                                                                         | $\sqrt{2}$                                                                                                                               |
| Q.No: 33 | $\rm X_1$ and $\rm X_2$ are independent variants with means 4 and 9 and standard deviations 1 and 2 respectively. The correlation coefficient between U=2X <sub>1</sub> +X <sub>2</sub> and V= X <sub>1</sub> -2X <sub>2</sub> is: | $x_1$ तथा $x_2$ स्तर्तत्र वर है क्रमशः माध्य 4 एवं 9 तथा मानक विचलन 1 एवं 2 है। $u=2x_1+x_2$ तथा $v=x_1-2x_2$ के बीच सहसम्बंध गुणांक है: |

Q.No: 34 Two regression lines of Y on X and X on Y are respectively

|   | $Y=rac{t}{m}X+C$ and $X=rac{m^{st}}{t^{st}}+C^{st}$ . Then which one is true? | $\gamma$ पर $\chi$ तथा $\chi$ पर $\gamma$ दी समाश्रयण रेखायँ क्रमणः $Y=rac{l}{m}X+C$ तथा $X=rac{m^*}{l^*}+C^*$ है ती |
|---|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                 | निम्न में कौन सा सत्य है?                                                                                              |
| A | lm* ≤ l*m                                                                       | lm* ≤ l*m                                                                                                              |
| В | lm* ≥ l*m                                                                       | lm* ≥ l*m                                                                                                              |
| C | lm* = l*m                                                                       | lm* = J*m                                                                                                              |
| D | None of these                                                                   | इनमें से कोई नहीं                                                                                                      |

| Q.No: 35 | Let $x_1,x_2,\ldots,x_n$ be a random sample taken from N( $\mu,\sigma^2$ ). The sufficient statistic for $\mu$ when $\sigma^2$ is known, is: | संमष्टि N( $\mu$ , $\sigma^2$ ) से x <sub>1</sub> , x <sub>2</sub> ,x <sub>n</sub> एक याष्ट्रच्छिक प्रतिदर्श है। यदि $\sigma^2$ का मान दिया हो तो $\mu$ का पर्याप्त प्रतिदर्श है: |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | $\sum x^{-1}$                                                                                                                                | $\sum x$                                                                                                                                                                          |
| В        | $\sum x^2$                                                                                                                                   | $\sum x^2$                                                                                                                                                                        |
| С        | $\frac{1}{n}\sum x^2$                                                                                                                        | $\frac{1}{\tilde{n}}\sum x^2$                                                                                                                                                     |
| D        | None of these                                                                                                                                | इनमें से कोई नहीं                                                                                                                                                                 |

| Q.No; 36 | How many perametric values are specified for the simple hypothesis in a bivariate normal distribution? | द्विचर प्रसामान्य बंटन के लिये सरल परिकल्पना कितने प्राचलों के मान को निर्दिष्ट करती है ? |
|----------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| À        | 2                                                                                                      | 2                                                                                         |
| В        | 3                                                                                                      | 3                                                                                         |
| С        | 4                                                                                                      | 4                                                                                         |
| D        | 5                                                                                                      | 5                                                                                         |

| Q.No: | For testing ${\rm H_o}$ : $\sigma=\sigma_0$ in a normal distribution N(0, $\sigma^2$ ), the critical region is taken 37 as $\sum_{i=1}^n \chi_i^2 \le k$ . The alternative hypothesis for which it gives an uniformly most powerful test is : | प्रसामान्य बंटन $_0:\sigma=\sigma_0$ में $_0:\sigma=\sigma_0$ में $_0:\sigma=\sigma_0$ के परीक्षण के लिये क्रान्तिक क्षेत्र $\sum_{i=1}^n x_i^2 \leq k$ का प्रयोग किया गया । यह जिस वैकल्पिक परिकल्पना के लिये एक समान रूप से सर्वाधिक शक्तिशाली परीक्षण है, वह है: |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А     | $\sigma \neq \sigma_0$                                                                                                                                                                                                                        | $\sigma \neq \sigma_0$                                                                                                                                                                                                                                              |
| В     | $\sigma < \sigma_0$                                                                                                                                                                                                                           | $\sigma < \sigma_0$                                                                                                                                                                                                                                                 |

| $\sigma > \sigma_0$                                                                                                                                                                   | $\sigma > \sigma_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| For the population with probability density function $f(x,\theta)=(\theta+1)\times\theta;\ 0< x<1,\ \theta>-1.$ Sample mean $\bar{\chi}$ is an unbiased estimator of                  | किसी समष्टि के जिसका प्रायिकता घनल फलन $f(x,\theta)$ =( $\theta$ +1) $\times \theta$ ; $0< x<1$ , $\theta>$ -1 है प्रतिदश्य माध्य $\chi$ , एक अनिधनत आकलक है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| θ                                                                                                                                                                                     | θ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 0+1                                                                                                                                                                                   | θ+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (0+1)/(0+2)                                                                                                                                                                           | (0+1)/(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1/(0+2)                                                                                                                                                                               | 1/(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| If $x_1, x_2,x_n$ is a random sample from the $pmff(x,p) = p^{\times} (1-p)^{1-x}; \ x=0,\ 1,\ 0< p<1.$ Then, a sufficient statistic for p is $x_1$                                   | प्रायिकता मात्रा फलन x <sub>1</sub> , x <sub>2</sub> ,x <sub>n</sub> से एक याट्टब्लिक प्रतिदर्श<br>pmf f(x,p)= p <sup>x</sup> (1-p) <sup>1-x</sup> ;x=0, 1, 0 ×1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\sum_{i=1}^{n} x_i$                                                                                                                                                                  | $\sum_{i=1}^{n} x_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| × <sub>n</sub>                                                                                                                                                                        | x <sub>n</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IIf $T_1$ is most efficient estimator of $\theta$ with variance $v_1$ and $T_2$ is any other estimator of $\theta$ with variance $v_2$ , efficiency of $T_2$ with respect to $T_1$ is | यदि $T_1$ दक्षतम् आकलक $\hat{\theta}$ का है $v_1$ प्रसरण के साथ तथा $T_2$ कोई अन्य $\hat{\theta}$ का आकलक है $v_2$ प्रसरण के साथ तो $T_2$ की दक्षता $T_1$ के साधेक्ष है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| v <sub>2</sub> /v <sub>1</sub>                                                                                                                                                        | v <sub>2</sub> /v <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| v <sub>1</sub> /v <sub>2</sub>                                                                                                                                                        | v <sub>1</sub> /v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| v <sub>1</sub> v <sub>2</sub>                                                                                                                                                         | v <sub>1</sub> v <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Which of the following tecting graphers as planting of the course of this town                                                                                                        | निम्न परिकल्पना परीक्षकों में से किसमें काई स्कायर बंटन का प्रयोग होता है ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| C2-C-2                                                                                                                                                                                | ानुक्र पारकल्पना परावका में से किसमें कोई स्थापर बटन की प्रयोग होता है ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                       | None of these $ \begin{aligned} &\text{For the population with probability density function } f(x,\theta) = (\theta+1) \times \theta; \ 0 < x < 1, \ \theta \\ > -1. \\ &\text{Sample mean } \overline{\chi} \text{ is an unbiased estimator of } \theta \\ &\theta+1 \\ &(\theta+1)/(\theta+2) \end{aligned} $ If $x_1,x_2,x_n$ is a random sample from the pmf $f(x,\rho) = p^x (1-p)^{1-x}; \ x=0,\ 1,\ 0 x_1$ $\sum_{i=1}^n x_i$ $\sum_{i=1}^n x_i$ None of these $ \begin{aligned} &\text{If } T_1 \text{ is most efficient estimator of } \theta \text{ with variance } v_1 \text{ and } T_2 \text{ is any other estimator of } \theta \text{ with variance } v_2, \text{ efficiency of } T_2 \text{ with respect to } T_1 \text{ is } v_2/v_1 \\ &v_1/v_2 \\ &v_1/v_2 \\ &v_1/v_2 \\ &v_1/v_2 \\ &v_1/v_2 \end{aligned} $ None of these $ \end{aligned} $ Which of the following testing problem makes use of Chi-square distribution? |

| В        | $\sigma_1^2 = \sigma_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sigma_1^2 = \sigma_2^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | $\mu_1 = \mu_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\mu_1 = \mu_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D        | p <sub>1</sub> =p <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p <sub>1</sub> =p <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.No: 42 | Let $\bar{\chi}$ be the mean of a random sample from N( $\mu$ ,1). If null hypothesis H $_0$ : $\mu=\mu_0$ is rejected when $\bar{\chi}>\mu_0$ , then the size of the test is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | माना समष्टि N( $\mu$ ,1) से लिये गये एक याट्टान्छिक प्रतिदर्श का माध्य $\chi$ है। यदि शून्य परिकल्पना $_0$ : $\mu$ = $_0$ अस्वीकृत की जाती है जब $\chi$ > $\mu$ 0 तब परीक्षण का परिमाप है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| В        | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C        | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D        | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q.No: 43 | In a normal population N( $\mu$ , $\sigma^2$ ), let the MLE of $\sigma^2$ be $s^2$ . Then the MLE of fourth central moment of this population is:<br>3s <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | एक प्रसामान्य समष्टि $N(\mu,\sigma^2)$ में यदि $\sigma^2$ का अधिकतम संभाविता आक्लक $s^2$ है तो समष्टि के बतुर्थ केन्द्रीय आधूर्ण का अधिकतम संभाविता आक्लक है: $3s^4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| В        | 36°<br>s <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35°<br>5 <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| G        | 3s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3s <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3s-<br>इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | इनस से काइ नहा                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q.No: 44 | A maximum likelihood estimator of $\theta$ in U( $\theta,\;\theta+1)$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | बेंटन ∪(β, β+1) के लिये हैं β का महत्तम संभाविता आकलक है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A        | X(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| В        | X(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| c        | Any number in $X(n)-1 < \theta < X(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X(n)-1< θ< X(1) में कोई संख्या                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q.No: 45 | For the population $f(x) = \begin{cases} exp[-(x-\theta)], & \theta < x < \infty \\ 0, & otherwise \end{cases}$ likelihood estimator of $\theta$ based on random sample of size $n$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | समिष्टि $f(x) = \begin{cases} exp[-(x-\theta)], & \theta < x < \infty \text{ के िस्ये } n \text{ प्रोरमाप के याद्रिन्छिक प्रतिदर्श प} \\ 0, & otherwise \end{cases}$ आधारित $\Omega$ का अधिकतम सम्माविता आक्लक है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2        | The state of the s | The state of the s |

Smallest observation

| В        | Largest observation                                                                                                                                                                   | अधिकतम प्रेक्षण                                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| С        | Sample mean                                                                                                                                                                           | प्रतिदर्श माध्य                                                                                                                                                                                                         |
| D        | Sample median                                                                                                                                                                         | प्रतिदर्श माण्यिका                                                                                                                                                                                                      |
| Q.No: 46 | Let $x_1, x_2$ be a random sample from Poisson distribution with parameter $\lambda$ . Then $\left(\frac{1}{4}X_1+\frac{3}{4}X_2\right)$ is:                                          | माना $\mathbf{x}_1$ , $\mathbf{x}_2$ फोसों बंटन से किसका प्रावल $\lambda$ है, एक याट्टन्किक प्रतिवर्श है। तब, $\left(\frac{1}{4}\mathbf{X}_1+\frac{3}{4}\mathbf{X}_2\right)$ हैं:                                       |
| A        | An unbiased estimator of $\bar{\lambda}$                                                                                                                                              | λ का अनिभिनत आक्तक                                                                                                                                                                                                      |
| В        | Consistent estimator of $\lambda$                                                                                                                                                     | λ का संगत आवलक                                                                                                                                                                                                          |
| C        | A biased estimator of $\lambda$                                                                                                                                                       | λ का अनभिनत आक्लक                                                                                                                                                                                                       |
| D.       | None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                       |
| Q.No; 47 | If the sample mean of a random sample of size 16 from N( $\theta$ ,1) is 0.19, then 95% systematic confidence interval for $\theta$ is:                                               | यदि N( β,1) से लिये गर्य 16 आमाप के याट्टन्छिक प्रतिदर्श का प्रतिदर्श माध्य 0,19 है तो N( β,1) का 95'<br>सममित विश्वास्थता अन्तराल है:                                                                                  |
| A        | (-0.30,0.68)                                                                                                                                                                          | (-0.30,0.68)                                                                                                                                                                                                            |
| В        | (0.19,0.60)                                                                                                                                                                           | (0.19,0.60)                                                                                                                                                                                                             |
| C        | (-0.22,0.19)                                                                                                                                                                          | (-0.22,0.19)                                                                                                                                                                                                            |
| D        | None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                       |
| Q.No: 48 | Let X be a single observation from a binomial distribution with parameters (5,p). Let $H_0$ : p=1/5 and $H_1$ : p=2/5. If $H_0$ is rejected when X>3, probability of type I error is: | माना कि प्राचलों (5,p)चाले द्विपदःबंटन से एक अंकेला प्रेक्षण x है H <sub>0</sub> : p=1/5 तथा H <sub>1</sub> : p=2/5 है । यदि<br>H <sub>0</sub> अस्वीकृत की जाती है जब कि x>3 तो प्रथम प्रकार की त्रुटि की प्रायिकता है; |
| A        | 20<br>(5) <sup>5</sup>                                                                                                                                                                | 20<br>(5) <sup>5</sup>                                                                                                                                                                                                  |
| В        | 21<br>(5) <sup>5</sup>                                                                                                                                                                | 21<br>(5) <sup>5</sup>                                                                                                                                                                                                  |
| С        | 1<br>(5) <sup>§</sup>                                                                                                                                                                 | 1 (5)5                                                                                                                                                                                                                  |
| D        | None of these                                                                                                                                                                         | इनमें से कोई नहीं                                                                                                                                                                                                       |

|          | Let T be the number of successes in n independent Bernoulli trails with probability of successes $ \beta $ . An unbiased estimator of $ \beta^2 $ is:                               | सफलता की प्रायिकता $ eta $ वाले $ n $ स्वतन्त्र बर्नोली अभिप्रयोगों में सफलता की संख्या $ T $ है $ I $ तो $ eta^2 $ का अनिभन आक्तक है:                                                 |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | (T/n) <sup>2</sup>                                                                                                                                                                  | (T/n) <sup>2</sup>                                                                                                                                                                     |
| В        | T(T-1)/n(n-1)                                                                                                                                                                       | T(T-1)/n(n-1)                                                                                                                                                                          |
| С        | T(n-T)/n(n-1)                                                                                                                                                                       | T(n-T)/n(n-1)                                                                                                                                                                          |
| D        | None of these                                                                                                                                                                       | इनमें से कोई नहीं                                                                                                                                                                      |
| Q.No: 50 | If T is any consistent estimator of $\theta$ , another consistent estimator of $\theta$ is                                                                                          | यदि $	heta$ का संगत आक्लक $	au$ है तो $	heta$ का एक अन्य संगत आकलक है                                                                                                                  |
| A        | nT                                                                                                                                                                                  | nT                                                                                                                                                                                     |
| 3        | T+n                                                                                                                                                                                 | T+n                                                                                                                                                                                    |
|          | T-n                                                                                                                                                                                 | T-n                                                                                                                                                                                    |
| D        | nT/(n+1)                                                                                                                                                                            | nT/(n+1)                                                                                                                                                                               |
| Q.No: 51 | Which one of the following is true for estimation of mean of the normal distribution by sample median:                                                                              | प्रतिदर्श माध्यिका द्वारा प्रसामान्य बंटन के माध्य के आक्लन हेतु निम्न में से कीन सा सत्य है ?                                                                                         |
| 4        | unblased but not consistent                                                                                                                                                         | अनिभनत परंतु संगत नहीं होता                                                                                                                                                            |
| В        | consistent but not unbiased                                                                                                                                                         | संगत परंतु अन्भिनत नहीं होता                                                                                                                                                           |
| C        | both consistent and unbiased                                                                                                                                                        | संगत तथा अनिभनत दोनों होता है                                                                                                                                                          |
| 0        | neither consistent nor unbiased                                                                                                                                                     | न संगत तथा न अनिभनत होता है                                                                                                                                                            |
| Q.No: 52 | For a UMP test of size $lpha$ , state which of the following statements is true? (Where $eta$ is the probability of second kind of error)                                           | lpha आकार वाले एक समान सामर्थ्यवान प्ररीक्षण के लिये कौन सा कथन सत्य है ? (जबिक $eta$ द्वितीय प्रकार की बुटि की प्राधिकता है)                                                          |
| A        | $\alpha \leq \beta$                                                                                                                                                                 | $\alpha \leq \beta$                                                                                                                                                                    |
| 3        | $(1-\alpha)\leq \beta$                                                                                                                                                              | $(1-\alpha) \leq \beta$                                                                                                                                                                |
| 2        | $\alpha = \beta$                                                                                                                                                                    | $\alpha = \beta$                                                                                                                                                                       |
| )        | None of these                                                                                                                                                                       | इनमें से कोई नहीं                                                                                                                                                                      |
| Q.No: 53 | Let the statistic $T_1$ be an unbiased estimator of parameter $\theta$ , while $T_2$ is a sufficient statistic for $\theta$ . Then the best statistic in the sense of variance is : | माना कि प्रतिदर्श $\mathbb{T}_1$ प्राचल $\mathbf{\theta}$ का एक अनमिनत आकलक है जबकि प्रतिदर्शज $\mathbb{T}_2$ प्राचल हेतु पर्याप्त है तो प्रसरन की इष्टि से सबसे अन्त्र प्रतिदर्शज है: |

| В | T <sub>2</sub>                     | T <sub>2</sub>                     |  |
|---|------------------------------------|------------------------------------|--|
| C | E(T <sub>1</sub> /T <sub>2</sub> ) | E(T <sub>1</sub> /T <sub>2</sub> ) |  |
| D | None of these                      | इनमें से कोई नहीं                  |  |
|   |                                    |                                    |  |

| Q.No: 54 | For testing H <sub>0</sub> : $\theta$ = 4 against H <sub>2</sub> : $\theta \neq$ 4 in population N( $\theta$ ,5), UMPU Critical region is : | एक प्रसामान्य समष्टि N( $m{\theta}$ ,5) में H $_{0}$ : $m{\theta}$ = 4 के विरूद्ध H1: $m{\theta}$ $\neq$ 4 के परीक्षण के लिये UMPU क्रांतिक क्षेत्र हैं: |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | $ \overline{x}  \ge K$                                                                                                                      | $ \overline{x}  \ge K$                                                                                                                                   |
| В        | $ \overline{x}  \ge K$                                                                                                                      | $ \overline{x}  \ge K$                                                                                                                                   |
| С        | $ \overline{x}  \le K$                                                                                                                      | $ \overline{x}  \leq K$                                                                                                                                  |
| D        | None of these                                                                                                                               | इनमें से कोई नहीं                                                                                                                                        |

| Q.No: 55 | Let $x_1, x_2,x_n$ be as random sample from population N( $\mu$ , $\sigma^2$ ), $\mu$ and $\sigma^2$ both are unknown. The unbiased estimator of $\sigma^2$ is : | माना $x_1,x_2x_n$ समष्टि $N(\mu,\sigma^2)$ से एक यादृष्टिक प्रतिदर्श हैं ( $\mu$ तथा $\sigma^2$ दोनों अज्ञात हैं) तो $\sigma^2$ का अनिभनत आकलक है: |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Д        | $\frac{1}{n}\sum x_i^2$                                                                                                                                          | $\frac{1}{n}\sum x_i^2$                                                                                                                            |
| В        | $\frac{1}{n-1}\sum (x_i - \overline{x})^2$                                                                                                                       | $\frac{1}{n-1}\sum(x_i-\overline{x})^2$                                                                                                            |
| С        | $\frac{1}{n}\sum(x_i-\overline{x})^2$                                                                                                                            | $\frac{1}{n}\sum(x_t-\overline{x})^2$                                                                                                              |
| D        | None of these                                                                                                                                                    | इनमें से कोई नहीं                                                                                                                                  |

 $x_1, x_2, x_3, \dots, x_n$  याद्रच्छिक प्रतिदर्श के आधार पर बंटन के माध्य के आकलन हेंद्र अनिधनत आकलक निम्न में कीन है ?  $\frac{2}{n(n+1)} (x_1 + 2x_2 + \dots + nx_n)$   $\frac{2}{n^2} (x_1 + 2x_2 + \dots + nx_n)$   $\frac{2}{n(n+1)} [x_1 + \frac{1}{2}x_2 + \dots + \frac{1}{n}x_n]$ Q.No: 56 For estimating mean of a distribution on the basis of a random sample  $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}, \ldots$   $\mathbf{x_n}, \text{ which one of the following is unbiased estimator?}$   $\mathbf{A} \qquad \frac{2}{\mathbf{n(n+1)}} \big( \mathbf{x_1} + 2\mathbf{x_2} + \cdots + n\mathbf{x_n} \big)$   $\mathbf{B} \qquad \frac{2}{\mathbf{n^2}} \big( \mathbf{x_1} + 2\mathbf{x_2} + \cdots + n\mathbf{x_n} \big)$ 

 $\tfrac{2}{n(n+1)}[x_1+\tfrac{1}{2}x_2+\dots+\tfrac{1}{n}x_n]$ 

| D        | None of these                                                                                                                                                                               | इनमें से कोई नहीं                                                                                                                                                                                         |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q.No: 57 | A random sample $\mathbf{x}_1, \mathbf{x}_2, \ldots \mathbf{x}_n$ of size n is taken from the population whose pdf is $f(x)=(\alpha+1)x^{\alpha}, \ 0 \le x \le 1$ . The MLE of $\alpha$ is | एक n आकार का याष्ट्रिक्षक प्रतिदर्श $x_1, x_2, \ldots, x_n$ उस समष्टि से लिया गया है जिसका प्रायिकता घनल फलन $f(x)$ = $(\alpha+1)x^{\alpha}, 0 \leq x \leq 1$ . है, $\alpha$ का अधिकतम संभितिता आकलक हैं: |
| À        | $rac{n}{\sum_i log x_i}$                                                                                                                                                                   | $\frac{n}{\sum_{i}logx_{i}}$                                                                                                                                                                              |
| В        | $1 + \frac{n}{\sum_i log x_i}$                                                                                                                                                              | $1 + \frac{n}{\sum_i log x_i}$                                                                                                                                                                            |
| С        | $-1 + \frac{n}{\sum_{i} log x_{i}}$                                                                                                                                                         | $-1 + \frac{n}{\sum_{i} log x_{i}}$                                                                                                                                                                       |
| D        | $-1 - \frac{n}{\sum_{l} log x_{l}}$                                                                                                                                                         | $-1 - \frac{n}{\sum_{i} log x_{i}}$                                                                                                                                                                       |

| Q.No: 58 | Let $\{X_j\}$ be a sequence of identically and independently distributed random variable with finite means and variance. Then for $\{X_j\}$ . | माना $\{X_j\}$ एक परस्पर स्वतंत्र समान बंटन वाले याट्टच्छिक चरों की श्रंखला है जिनके माध्य तथा प्रसरण परिमित<br>हैं। $\{X_j\}$ के लिये: |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| A        | Weak law of large numbers holds but central limit theorem does not                                                                            | निर्वल वृहत् संख्या नियम सत्य है किन्तु केन्द्रीय सीमा प्रमेय नहीं                                                                      |
| В        | Central limit theorem holds but weak law of large numbers does not                                                                            | केन्द्रीय सीमा प्रमेय सत्य है किन्तु निमेय वृहत् संख्या नियम नहीं                                                                       |
| C        | Both weak law of large numbers and central limit theorem hold                                                                                 | केन्द्रीय सीमा प्रतेय तथा निर्वल वृहत् संख्या नियम दोनो सत्य हैं                                                                        |
| D        | None of these                                                                                                                                 | इनमें से कोई नहीं                                                                                                                       |

| Q.No: | 59 The point of intersection of two Ogives gives | दो तोरणों का कटान बिंदु प्रदान करता है: |  |
|-------|--------------------------------------------------|-----------------------------------------|--|
| Α     | Mean                                             | माध्य                                   |  |
| В     | Mode                                             | बहुतक                                   |  |
| C     | Median                                           | माध्यका                                 |  |
| D     | None of these                                    | इनमें से कोई नहीं                       |  |
|       | 772100000000000000000000000000000000000          | कृतिक से अनुस्ति नहीं                   |  |

Q.No: 60 When the total frequency of a distribution is increased indefinitely and class-intervals जब किसी बंटन की कुल बारम्बारता बहुत बहा दी जाय तथा वर्ग अन्तराल बहुत छोटा कर दिया जाय तो are made very small, the frequency polygon takes the following form :



| A        | Ogives                                                                                                                                                           | तोरण                                                                                                                                           |  |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| В        | Frequency curve                                                                                                                                                  | बारम्बारता वक्र                                                                                                                                |  |
| С        | Histogram                                                                                                                                                        | आयतचित्र                                                                                                                                       |  |
| D        | None of these                                                                                                                                                    | इनमें से कोई नहीं                                                                                                                              |  |
| Q.No: 61 | The most appropriate diagram to represent the distribution of national plan outlay of a country in different sectors of economy is                               | किसी देश के राष्ट्रीय योजना परिसर का विभिन्न आर्थिक क्षेत्रों में बंटन को प्रदर्शित करने के लिये निम्न चित्र का<br>प्रयोग सर्वाधिक उपयुक्त है: |  |
| Α        | Histogram                                                                                                                                                        | आयतचित्र                                                                                                                                       |  |
| В        | Frequency Polygon                                                                                                                                                | बारम्बारता बहुभुज                                                                                                                              |  |
| С        | Ogive                                                                                                                                                            | तोरण                                                                                                                                           |  |
| D        | Pie Chart                                                                                                                                                        | पाई चित्र                                                                                                                                      |  |
| Q.No: 62 | Which one of the following measure of central tendency remains unaffected by extreme observations?  Arithmetic Mean                                              | निमृतिखित में केन्द्रीय प्रवृत्ति की कौन सी माप चरम प्रेक्षकों से अप्रभावित रहती है ?                                                          |  |
| A        |                                                                                                                                                                  | समानान्तर माध्य                                                                                                                                |  |
| В        | Harmonic mean                                                                                                                                                    | हरात्मक माध्य                                                                                                                                  |  |
| C        | Median                                                                                                                                                           | माध्यिका                                                                                                                                       |  |
| D        | Geometric Mean                                                                                                                                                   | गुणोत्तर साध्य                                                                                                                                 |  |
| Q.No: 63 | The correlation coefficient between X and Y is r = -1/2. If regression coefficient $b_{\gamma\chi}$ = -1/8 then other regression coefficient $b_{\chi\gamma}$ is | $X$ तथा $Y$ के बीच सहसम्बंध गुणांक है $r=-1/2$ . यदि समाश्रयण गुणांक $b_{yx}=-1/8$ हैं तो दूसरा समाश्रयण गुणांक $b_{xy}$ है                    |  |
| A        | -2                                                                                                                                                               | -2                                                                                                                                             |  |
| В        | -4                                                                                                                                                               | -4                                                                                                                                             |  |
| С        | 2                                                                                                                                                                | 2                                                                                                                                              |  |
| D        | 4                                                                                                                                                                | 4                                                                                                                                              |  |
| Q.No: 64 | For testing the independence of attributes in a contingency table, which one of the following test is used?                                                      | किसी आसंग तालिका में गुणों की खतन्त्रता के परीक्षण हेतु निम्न में कौन सा परीक्षण प्रयुक्त होता है ?                                            |  |
| A        | Chi-Square                                                                                                                                                       | काई-स्कायर                                                                                                                                     |  |
| P        |                                                                                                                                                                  |                                                                                                                                                |  |

| С        | P'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F                                                                                                                                                   |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | इनमें से कोई नहीं                                                                                                                                   |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                     |
| Q.No: 65 | For testing that a bivariate sample has come from an uncorrelated bivariate Normal population. Which one of the following test is used? $\frac{1}{2} \left( \frac{1}{2} \right) = \frac{1}{2} \left( \frac{1}{2} \right) $ | इस परीक्षण हेतु कि एक द्विचरीय प्रतिदर्श किसी असम्बन्धित द्विचर प्रसामान्य समष्टि से लिया गया है, निम्न में किर<br>परीक्षण का प्रयोग किया जाता है ? |
| A        | Chi-Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | काई स्कायर                                                                                                                                          |
| В        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                   |
| С        | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t                                                                                                                                                   |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | इनमें से कोई नहीं                                                                                                                                   |
| Q.No: 66 | Let T be an unbiased estimator of $\boldsymbol{\theta}$ . Then which one of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | यदि Τ, θ का अनिधनत आक्तक है तो निम्न में कौन सत्य है ?                                                                                              |
| À        | $T^2$ is unbiased for $\theta^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T <sup>2</sup> , $\theta^2$ का अनिधनत आक्तक हे                                                                                                      |
| В        | $\sqrt{T}$ is unbiased for $\sqrt{	heta}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\sqrt{T}$ , $\sqrt{	heta}$ का अनिभनत आक्तक है                                                                                                      |
| С        | 1/T is unbiased for 1/ $\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/ θ, 1/Τ का अनिभनत आक्लक है                                                                                                                        |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | इनमे से कोई नहीं                                                                                                                                    |
| O No: 67 | The consistency of an estimator is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | आवलक की संगतता                                                                                                                                      |
| A        | Larger sample property only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | केवल वहत प्रतिदर्श गुण है                                                                                                                           |
| В        | Small sample property only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | वृहत् अल्प प्रतिदर्श गुण है                                                                                                                         |
| С        | Both Large and Small sample property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | वृहत् तथा अल्प प्रतिदर्श गुण दोनों है                                                                                                               |
| D        | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | इनमें से कोई नहीं                                                                                                                                   |
| O No: 69 | For Cauchy distribution with parameter $oldsymbol{eta}$ , the consistent estimator of $oldsymbol{eta}$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | प्राचल $oldsymbol{eta}$ के साथ का उभी बंटन के लिये , $oldsymbol{eta}$ का संगत आक्लक है:                                                             |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | प्रतिदर्श मध्य                                                                                                                                      |
| В        | Sample median                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | प्रतिदर्श माध्य                                                                                                                                     |
| C        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | प्रतिदर्श बहुलक                                                                                                                                     |
| D        | Sample mode None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | प्रातदश बहुलक<br>इनमें से कोई नहीं                                                                                                                  |

| Q.No: 69 | If the variance of an unbiased estimator attains the Cramer-Rao lower bound, the estimator is $% \left\{ 1,2,,n\right\}$                                                                                                                                   | यदि किसी अनिभनत आक्लक का प्रसरण क्रेमर-राव न्यूनतम सीमा प्राप्त करता है तो आक्लक है:                                                                                                                         |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A        | Consistent                                                                                                                                                                                                                                                 | संगत                                                                                                                                                                                                         |
| В        | Sufficient                                                                                                                                                                                                                                                 | पर्याप्त                                                                                                                                                                                                     |
| С        | Most efficient                                                                                                                                                                                                                                             | दक्षतम                                                                                                                                                                                                       |
| D        | None of these                                                                                                                                                                                                                                              | इनमें से कोई नहीं                                                                                                                                                                                            |
| Q.No: 70 | If a sufficient statistic exists for a parameter, the maximum likelihood estimator of that parameter is always :                                                                                                                                           | यदि पर्याप्त प्रतिदर्शज किसी प्राचल के लिये हैं तो प्राचल का अधिकतम संभाविता आक्लक सदैव होता है                                                                                                              |
| A        | Unique                                                                                                                                                                                                                                                     | अद्वितीय                                                                                                                                                                                                     |
| В        | Unblased                                                                                                                                                                                                                                                   | अनिधनत                                                                                                                                                                                                       |
| С        | Most efficient                                                                                                                                                                                                                                             | दक्षतम                                                                                                                                                                                                       |
| D        | Sufficient                                                                                                                                                                                                                                                 | पर्याप्त                                                                                                                                                                                                     |
| Q.No: 71 | A UMP test for a simple null hypothesis against a composite alternative hypothesis:                                                                                                                                                                        | सरल शून्य परिकल्पना को संयुक्त परिकल्पना के विरूद्ध परीक्षण के लिये एक समानत: अधिकतम सामर्थ्यवान<br>परीक्षण                                                                                                  |
| A        | May or may not exist                                                                                                                                                                                                                                       | प्राप्त हो सकता है और नहीं भी                                                                                                                                                                                |
| В        | Always exist                                                                                                                                                                                                                                               | सदैव प्राप्त हो सकता है                                                                                                                                                                                      |
| C        | Never exist                                                                                                                                                                                                                                                | कदापि प्राप्त नहीं हो सकता है                                                                                                                                                                                |
| D        | None of these                                                                                                                                                                                                                                              | इनमें से कोई नहीं                                                                                                                                                                                            |
| Q.No: 72 | It is proposed to test $H_0\colon \theta=2$ against $H_1\colon \theta=1$ on the basis of a single observation X from distribution $f(x)=\theta$ exp(- $\theta x$ ); $x\geq 0$ . If critical region is $X>1$ , the value of probability of type I error is: | बंदन $f(x)=eta\exp(-eta x); \ x\geq 0$ से एक प्रेक्षण $x$ पर आधारित $H_0\colon eta=2$ का $H_1\colon eta=1$ के कि परीक्षण करना है। यदि क्रान्तिक क्षेत्र $x>1$ है, तो प्रथम प्रकार की त्रुटि की प्रायकिता है। |
| Δ        | e <sup>2</sup>                                                                                                                                                                                                                                             | e <sup>2</sup>                                                                                                                                                                                               |

Q.No: 73 The minimum variance unbiased estimator of  $\theta$  in  $U(0,\theta)$  is:

 $(e^2-1)/e$ 

e/(e<sup>2</sup>-1)

υ(0,θ) में θ का न्यूनतम प्रसरण अनभिनत आक्लक है:

1/e<sup>2</sup> (e<sup>2</sup>-1)/e

e/(e<sup>2</sup>-1)

| A | $\frac{n}{n+1}X_{(n)}$ | $\frac{n}{n+1}X_{(n)}$ |  |
|---|------------------------|------------------------|--|
| В | $\frac{n+1}{n}X_{(n)}$ | $\frac{n+1}{n}X_{(n)}$ |  |
| C | $X_{(n)}$              | $X_{(n)}$              |  |
| D | None of these          | इनमें से कोई नहीं है   |  |

If  $X_1, X_2, \dots, X_{n+1}$  are independently and identically distributed N(0,1) variables,  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{\sum_{i=1}^{n} x_i^2}}$  is  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{\sum_{i=1}^{n} x_i^2}}$  is  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{\sum_{i=1}^{n} x_i^2}}$  in eight  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{\sum_{i=1}^{n} x_i^2}}$  in eight  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{n} \ X_{n+1}}$ , स्वतंत्र वधा समान रूप से बंटित N(0,1) घर है, तो  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{n} \ X_{n+1}}$  is eight  $\frac{\sqrt{n} \ X_{n+1}}{\sqrt{n} \ X_{n+1}}$ .

Q.No: 75 For testing the 'goodness of fit' of a distribution. Which of the following test is used?

A F
B t
C Z
C Chi-Square

Goodness of fit' of a distribution. Which of the following test is used?

F
t
C Z

Chi-Square

इनमें से कोई नहीं

In answering a question on a multiple choice test, an examinee either knows the answer with probability p or guesses with probability (1-p). The probability of answering question correctly is one if he knows the answer and 1/m if he quesses. If an examinee answers a question correctly the probability that he really know the answer is an examinee answers a question correctly the probability that he really know the answer is  $\frac{mp}{1+mp}$ 

В

C D

None of these

|    | mp                        | mp                    |  |
|----|---------------------------|-----------------------|--|
|    | 1+(m-1)p                  | $\overline{1+(m-1)p}$ |  |
|    | (m-1)p                    | (m-1)p                |  |
| C  | $\frac{(m-1)p}{1+(m-1)p}$ | 1+(m-1)p              |  |
| P. | (m-1)p                    | (m-1)p                |  |
| D  | 1 + mp                    | 1 + mp                |  |

| Q.No: 7 | 7 The relation between mean and variance of a chi square distribution is | काई स्क्रायर बंटन के माध्य तथा प्रसरण में सम्बंध है |  |
|---------|--------------------------------------------------------------------------|-----------------------------------------------------|--|
| A       | Mean = Variance                                                          | माध्य= प्रसरण                                       |  |
| В       | Mean = 2 Variance                                                        | माध्य = 2 प्रसारण                                   |  |
| C       | Variance = 2 Mean                                                        | प्रसरण = 2 माध्य                                    |  |
| D       | None of these                                                            | इनमें से कोई नहीं                                   |  |

| Q.No: | 78 Least square estimators of parameters of a linear model are: | रैखिक माडल में प्राचलों के न्यूनतम वर्ग आकलक होते हैं |
|-------|-----------------------------------------------------------------|-------------------------------------------------------|
| Α     | Unbiased                                                        | अनभिनत                                                |
| В     | Best linear unbiased                                            | श्रेष्ठतम रेखिक अनभिनत                                |
| C     | Uniformly minimum variance unbiased                             | एक समान न्यूनतम प्रसरण अनिधनत                         |
| D     | All of these                                                    | इनमें से कोई नहीं                                     |

| Q.No: 7 | In a binomial distribution with parameters n and p, the coefficient of skewness is zero if | द्विपद बंटन, जिसके प्राचल n तथा p है, का विषमता गुणाँक शून्य होता है यदि |
|---------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| A       | P = 1/2                                                                                    | P = 1/2                                                                  |
| 3       | P > 1/2                                                                                    | P > 1/2                                                                  |
| 2       | P < 1/2                                                                                    | P < 1/2                                                                  |
| 0       | None of these                                                                              | इनमें से कोई नहीं                                                        |

| Q.No: | 30 Degrees of freedom is related to | स्वतंत्र कोटि सम्बन्धित होती है।      |  |
|-------|-------------------------------------|---------------------------------------|--|
| Á     | Number of observations in the set   | सेंट में दिये प्रेक्षणों की संख्या पर |  |
| В     | Hypothesis under test               | परीक्षण में परिकल्पना पर              |  |

| C        | Number of linearly independent observations in the set                                                                                                        | सेट में दिये रैखिक रूप से स्वतन्त्र प्रेक्षणों की संख्या पर                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| D        | None of these                                                                                                                                                 | इनमें से कोई नहीं                                                                                                                                      |
| Q.No; 81 | Let X and Y be two independent variables with variances $\sigma_1{}^2$ and $\sigma_2{}^2$ respectively. Then, correlation coefficient between X and (X-Y) is: | माना $X$ तथा $Y$ दो स्वतंत्र चर है जिनका प्रसरण क्रमष $:$ ${\bf O_1}^2$ तथा ${\bf O_2}^2$ है। तब $X$ तथा $(X-Y)$ के मध्य सह सम्बन्ध गुणांक है          |
| A        | $\frac{\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                                           | $\frac{\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                                    |
| В        | $\frac{\sigma_1}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                                           | $\frac{\sigma_1}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                                    |
| С        | $\frac{\sigma_1\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                                   | $\frac{\sigma_1\sigma_2}{\sqrt{{\sigma_1}^2+{\sigma_2}^2}}$                                                                                            |
| D        | None of these                                                                                                                                                 | इनमें से कोई नहीं                                                                                                                                      |
| Q.No; 82 | Let $M_X(t)$ be moment generating function of a random variable $X$ about origin. Then, moment generating function of $Y = \{(X/3) + 4\}$ about origin is     | माना M <sub>×</sub> (t) याष्ट्र <del>व्हिक</del> चर X का शून्य के सापेक्ष आधूर्णजनक फलन है।<br>तब Y = {(X/3)+ 4} का शून्य के सापेक्ष आधूर्ण जनक फलन है |
| A        | $M_{y}(t) = M_{x}(t/3)$                                                                                                                                       | $M_{\gamma}(t) = M_{\chi}(t/3)$                                                                                                                        |
| В        | $M_{y}(t) = M_{3x}(t) e^{4t}$                                                                                                                                 | $M_{\gamma}(t) = M_{3x}(t)e^{4t}$                                                                                                                      |
| c        | $M_{y}(t) = M_{x}(t/3)e^{4t}$                                                                                                                                 | $M_{\gamma}(t) = M_{\chi}(t/3)e^{4t}$                                                                                                                  |
|          |                                                                                                                                                               |                                                                                                                                                        |

| Q.No: | 83 If X has exponential distribution with mean 1/ $\lambda$ then $rac{P_r(X \ge 2x)}{P_r(X \ge 3x)}$ is: | यदि $	imes$ का बंटन वर घातीय है,जिसका माध्य 1/ $\lambda$ है, तो $\dfrac{P_{r}(X{>}2x)}{P_{r}(X{>}3x)}$ का मान है |
|-------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Α     | e⁻\x*                                                                                                     | e⁻\x×                                                                                                            |
| В     | eλ×                                                                                                       | eλ×                                                                                                              |
| С     | e <sup>-x</sup> /λ                                                                                        | e-x/\lambda                                                                                                      |
| D     | e <sup>x</sup> /λ                                                                                         | e*/\lambda                                                                                                       |

 $M_{y}(t) = M_{3x}(t)e^{t/4}$ 

 $\mathrm{M}_{\mathrm{y}}(\mathrm{t}) = \mathrm{M}_{3\mathrm{x}}(\mathrm{t})\,\mathrm{e}^{\mathrm{t}/4}$ 

| 0.       |                                                                                                 |                                                                                             |
|----------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Α.       | Geometric                                                                                       | ज्यामितीय                                                                                   |
| В        | Gamma                                                                                           | गमा                                                                                         |
|          | Hyper geometric                                                                                 | हाईपर ज्यामितीय                                                                             |
| D        | All of these                                                                                    | सभी सही है                                                                                  |
| Q.No: 85 | With the help of Ogive curve, which of the following can be determined?                         | तोरण वक्र से निम्न में से किसकी गणना की जा सकती है ?                                        |
| A        | Median                                                                                          | माध्यिका                                                                                    |
| В        | Deciles                                                                                         | दशांक                                                                                       |
| c        | Percentiles                                                                                     | शतांक                                                                                       |
| D        | All of these                                                                                    | सभी सही है                                                                                  |
| Q.No: 86 | A negative correlation between anxiety before test and the performance there in, indicates that | किसी परीक्षण से पहले की चिंता तथा परीक्षण में प्रदर्शन के बीच ऋणात्मक सहसम्बन्ध दर्शाता है: |
| A        | More the anxiety the better is the performance                                                  | जितनी अधिक चिंता उतना अच्छा प्रदर्शन                                                        |
| В        | Lesser the anxiety better is the performance                                                    | जितनी कम चिंता उतना अच्छा प्रदर्शन                                                          |
| С        | Lesser the anxiety lesser is the performance                                                    | जितनी कम चिंता उतना खराब प्रदर्शन                                                           |
| D        | None of these                                                                                   | इनमें से कोई नहीं                                                                           |
| Q.No: 87 | Simple random sample can be drawn with the help of :                                            | सरल याड्चिक प्रतिदर्श निम्न में किराकी सहायता से लिया जा सकता है ?                          |
| Α        | Random Number Table                                                                             | याष्ट्रच्छिक संख्या सारिणी                                                                  |
| В        | Chit method                                                                                     | चिट विधि                                                                                    |
| C        | Roulett Wheel                                                                                   | रौलेट चक्र                                                                                  |
| D        | All of these                                                                                    | सभी सही हैं                                                                                 |
| Q.No: 88 | If F value for treatments in ANOVA comes out to be less than unity, it may be due to            | यदि प्रसरण विश्लेषण में कारको के लिए F का मान एक से कम आता है तो इसका कारण हो सकता:         |
| A        | Improper Randomisation                                                                          | गलत याट्टब्छिकता                                                                            |
| В        | Non-normality                                                                                   | प्रसामान्यता का न होना                                                                      |
| С        | Selecting a wrong statistical model                                                             | गलत सांखिकी आब्यूह का चुनाव                                                                 |

| D        | All of these                                                                                                            | सभी सही है                                                                                                               |
|----------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Q.No: 89 | To select team for an inter collegiate Quiz Competition, which of the following sampling technique is most appropriate? | विभिन्न कालेज के बीच होने वाली पहेंली प्रतियोगिता के लिये टीम चुनने में निम्न में कौन सी प्रतिचयन विधि सबसे<br>उचित है ? |
| A        | Quota Sampling                                                                                                          | कोटा प्रतिचयन                                                                                                            |
| В        | Stratified Sampling                                                                                                     | स्तरित प्रतिचयन                                                                                                          |
| C        | Purposive sampling                                                                                                      | उद्देश्यीय प्रतिचयन                                                                                                      |
| D        | Simple Random Sampling                                                                                                  | सरल याट्टच्छिक प्रतिचयन                                                                                                  |
| Q.No: 90 | In sampling with probability proportional to size, the units are selected with probability proportional to              | प्रतिचयन विधि जिसमें प्रायिकता आकार के अनुपात में हैं,इकाइयाँ चुनी जाती है उस प्रायिकता के साथ जो<br>अनुपात में होती है  |
| A        | Size of sample                                                                                                          | प्रतिचयन आकार के                                                                                                         |
| В        | Size of population                                                                                                      | समष्टि आकार के                                                                                                           |
| C        | Size of unit                                                                                                            | इकाई आकार के                                                                                                             |
| D        | None of these                                                                                                           | इनमें से कोई नहीं                                                                                                        |
| O No. 01 | When calculating the average rate of debt expansion for a company, which one of the                                     | किसी कम्पनी की ऋण वृद्धि के माध्य की गणना करने के लिये,निम्न में कौन सा माध्य सबसे उचित है ?                             |
| Q.No: 91 | following mean is most appropriate?                                                                                     | ाकसा कम्पना का ऋण वृध्द के माध्य का गणना करने के लिय, निम्न में कान सा माध्य सबस उचित है ?                               |
| A        | Geometric Mean                                                                                                          | गुणोत्तर माध्य                                                                                                           |
| В        | Arithmetic mean                                                                                                         | समानान्तर माध्य                                                                                                          |
| С        | Harmonic mean                                                                                                           | हरात्मक माध्य                                                                                                            |
| D        | None of these                                                                                                           | इनमें से कोई नहीं                                                                                                        |
|          | Let X and Y be two independent binomial b(n,p) variates, which one of the following                                     |                                                                                                                          |
| Q.No: 92 | is true?                                                                                                                | माना X तथा Y दो स्वतंत्र द्विपद b(n,p) चर है। निम्न में कौन सत्य है।                                                     |
| A        | E(X+Y) > V(X+Y)                                                                                                         | E(X+Y) > V(X+Y)                                                                                                          |
| В        | E(X+Y) < V(X+Y)                                                                                                         | E(X+Y) < V(X+Y)                                                                                                          |
| С        | E(X) = V(Y)                                                                                                             | E(X) = V(Y)                                                                                                              |
| D        | None of these                                                                                                           | हनमें से लोर्ड नहीं                                                                                                      |

| Q.No: 93 | The difference between a statistic and the corresponding parameter is said to be:                                                                                                         | प्रतिदर्शाज तथा उसके प्राचल के बीच के अन्तर को कहते है:                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| A        | Standard error                                                                                                                                                                            | मानक त्रुटि                                                                                                   |
| В        | Sampling error                                                                                                                                                                            | प्रतिचयन बुटि                                                                                                 |
| С        | Both (Standard) and (Sampling error)                                                                                                                                                      | दोनों (प्रतिचयन त्रुटि) तथा (प्रतिचयन त्रुटि)                                                                 |
| D        | Neither (Standard) nor (Sampling error)                                                                                                                                                   | न (मानक त्रुटि) न (प्रतिचयन त्रुटि)                                                                           |
| Q.No: 94 | The target population is another way of describing                                                                                                                                        | लक्ष्य समष्टि निम्न में किसको बताने का दूसरा तरीका है ?                                                       |
| А        | Survey Population                                                                                                                                                                         | सर्वे समष्टि                                                                                                  |
| В        | Main Sample                                                                                                                                                                               | मुख्य प्रतिचयन                                                                                                |
| C        | The population for which results are required                                                                                                                                             | वह समष्टि जिसकें परिणाम अपेक्षित है                                                                           |
| D        | None of these                                                                                                                                                                             | इनमें से कोई नहीं                                                                                             |
| Q.No: 95 | A sample survey is to be conducted to estimate the average size of land holdings of house holds in a district. Which one of the following will be most appropriate procedure of sampling? | एक जिले के परिवारों के जोतों का औरात क्षेत्रफल आंकलित करना है। निम्न में से कौन सी विधि सबसे उपयुक्त<br>होगी? |
| A        | Simple Random Sampling                                                                                                                                                                    | सरल याट्टच्छिक प्रतिचयन                                                                                       |
| В        | Stratified Random Sampling                                                                                                                                                                | स्तारित याट्टच्छिक प्रतिचयन                                                                                   |
| С        | Systematic Sampling                                                                                                                                                                       | क्रमबध्द प्रतिचयन                                                                                             |
| D        | None of these                                                                                                                                                                             | इनमें से कोई नहीं                                                                                             |
| Q.No: 96 | For a m x m laten square design, the degree of freedom for error is:                                                                                                                      | m x m लैटिन वर्ग अधिकल्प में दूटि के लियं स्वतंत्र कोटि होती है:                                              |
| A        | m² - 1                                                                                                                                                                                    | m² - 1                                                                                                        |
| В        | $(m-1)^2$                                                                                                                                                                                 | (m-1) <sup>2</sup>                                                                                            |
| C        | m(m-1)                                                                                                                                                                                    | m(m-1)                                                                                                        |
| D        | (m-1)(m-2)                                                                                                                                                                                | (m-1)(m-2)                                                                                                    |
|          |                                                                                                                                                                                           |                                                                                                               |
| Q.No: 97 | In 2 <sup>3</sup> factorial experiment, the number of two factor interaction is                                                                                                           | 23 बहुउपादानी प्रयोग में 2 उपारान अन्योन्य क्रिया की संख्या होगी                                              |
| 4        | 2                                                                                                                                                                                         | 2                                                                                                             |
| 4        |                                                                                                                                                                                           | 3                                                                                                             |

| С | 4 | 4 |
|---|---|---|
| D | 8 | 8 |

| Q.No: 98 | In a randamised block design there are 5 treatments and 20 plots. Then the number of replications for third treatment will be: | एक याट्टिक खंडक अभिकल्प में 20 भूखण्ड तथा 5 उपचार है। तो तृतीय उपचार की पुनरावृत्ति की संख्या<br>होती ? |
|----------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| 4        | 3                                                                                                                              | 3                                                                                                       |
| В        | 4                                                                                                                              | 4                                                                                                       |
| 2        | 5                                                                                                                              | 5                                                                                                       |
| 5        | 19                                                                                                                             | 19                                                                                                      |

| Q.No: 99 | In a 2 $^{\rm 3}$ factorial experiment, the treatment contract (1) –a-b+c+ab-ac-bc+abc belongs to the effect: | एक 2 <sup>3</sup> बहुजपादानी प्रयोग में उपचार विपर्यास (1) -a-b+c+ab-ac-bc+abc जो प्रभाव निरूपित करता है,<br>वह है: |
|----------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| A        | AC                                                                                                            | AC                                                                                                                  |
| В        | BC                                                                                                            | BC                                                                                                                  |
| c        | AB                                                                                                            | AB                                                                                                                  |
| D        | ABC                                                                                                           | ABC                                                                                                                 |

| Q.No: 100 | Completely Randomised design is based on the principles of : | पूर्णत: याट्टच्छिकीकृत अभिकल्प निम्न सिद्धांतो पर आधारित है: |  |
|-----------|--------------------------------------------------------------|--------------------------------------------------------------|--|
| A         | Replication Randomisation and local control                  | पुनरावृत्ति,याट्टच्छिकीकरण एवं स्थानीय नियन्त्रण             |  |
| В         | Replication and Randomisation only                           | केवल पुनरावृत्ति एवं याट्टच्छिकीकरण                          |  |
| c         | Randomisation and local control only                         | केवल याष्ट्रच्छिकीकरण एवं स्थानीय नियन्तण                    |  |
| D         | Replication and local control only                           | केवल पुनरावृत्ति एवं स्थानीय नियन्तण                         |  |

| Q.No: 101 | A ratio estimator gives higher precision if                                                             | एक अनुपात आक्लक अधिक दक्षता देता है यदि                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| A         | Regression line of Y on X passes through origin                                                         | समाश्रयण रेखा Y की X पर मूल बिद्ध से जाती है                                                              |
| В         | Regression of Y on X is linear                                                                          | समाश्रयण रेखा Y की X पर एक घातीय है                                                                       |
| С         | Both (Regression line of Y on X passes through origin) and (Regression of Y on X is linear)hold         | दोनों (समाश्रयण रेखा $Y$ की $X$ पर मूल बिद्ध से जाती है) तथा (समाश्रयण रेखा $Y$ की $X$ पर एक घातीय है)हों |
| D         | Neither (Regression line of Y on X passes through origin) nor (Regression of Y on X is linear)necessary | न (समाश्रयण रेखा Y की X पर मूल बिन्द्र से जाती है) न (समाश्रयण रेखा Y की X पर एक घातीय<br>है)आवयरक है     |

| Q.No: 102 | In simple random sampling without replacement the probability that a particular unit is selected at $\mathbf{r}^{th}$ draw, is: | पुनर्स्थापन रहित सरल याङ्ख्किक प्रतिचयन में किसी दी गई इकाई के r वें चुनाव में चयन की प्रायिकता होती है: |
|-----------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| A         | r/N                                                                                                                             | r/N                                                                                                      |
| В         | 1/N-r                                                                                                                           | 1/N-r                                                                                                    |
| С         | 1/(N-r+1)                                                                                                                       | 1/(N-r+1)                                                                                                |
| D         | 1/N                                                                                                                             | 1/N                                                                                                      |

| Q.No: 103 | In a $2^{3}\ \mbox{factorial}$ experiment the contribution of any effect (A) to the sum of squares for treatment is | एक 2 <sup>3</sup> बहुउपादानी प्रयोग में किसी उपाचार (A) का उपचार वर्ग योग में योगदान देता है: |
|-----------|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| A         | [A] <sup>2</sup> /6r                                                                                                | [A] <sup>2</sup> /6r                                                                          |
| В         | [A] <sup>2</sup> /2r                                                                                                | [A] <sup>2</sup> /2r                                                                          |
| С         | [A] <sup>2</sup> /8r                                                                                                | [A] <sup>2</sup> /8r                                                                          |
| D         | [A] <sup>2</sup> /4r                                                                                                | [A] <sup>2</sup> /4r                                                                          |

| Q.No: 104 | A population consisting of 50 units is divided into two strata such that $N_1$ =30, $N_2$ =20, $S_1$ =2, $S_2$ =3 if by Neymon Allocation, $n_1$ = 6 the sample size is | एक समष्टि जिसमें 50 इकाइवाँ है, दो स्तरों में विभाजित इस तरह से हैं कि $\rm N_1$ =30, $\rm N_2$ =20, $\rm S_1$ =2 $\rm S_2$ =3 यदि नेमेन आवंटन से $\rm n_1$ =6 है तो प्रतिदर्श आकार का मान है: |  |  |  |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A         | 6                                                                                                                                                                       | 6                                                                                                                                                                                              |  |  |  |
| В         | 12                                                                                                                                                                      | 12                                                                                                                                                                                             |  |  |  |
| С         | 25                                                                                                                                                                      | 25                                                                                                                                                                                             |  |  |  |
| D         | 30                                                                                                                                                                      | 30                                                                                                                                                                                             |  |  |  |

| Q.No: 105 | Which of the following statements is true in the context of randomised block design | याट्टच्छिकीकृत खण्ड अभिकल्पना से सम्बन्धित निम्न कथनों में कौन सा सत्य हैं ?            |
|-----------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| A         | The blocks are made in the direction perpendicular to route of fertility variation  | विभिन्न खण्ड,उर्वरता परिवर्तन की दिशा की लम्बवत् दिशाओं में बनाये जाते हैं।             |
| В         | The design controls experimental error in both the directions of experimental field | यह अभिकल्पना प्रयोगिक क्षेत्र की दोनों दिशाओं में प्रयोगिक तुटि को नियन्त्रित करती है।  |
| С         | In this design the number of treatments of replications                             | इस अभिकल्पना में अनिवार्यत: उपचारों की संख्या पुनरावृत्तियों की संख्या के समान होती है। |
| D         | Only the principles of randomisations and replications are used in this design      | इसमें मात्र याट्टव्छिकी करण तथा पुनरावृत्ति सिद्धांतों का उपयोग होता है।                |

| Q.No: 106 | A 2 <sup>3</sup> factorial experiment is to be conducted in a randomised block design. If degrees of freedom of error is to be kept 14, the number of blocks required is: | एक 2 <sup>8</sup> बहुतपादनी प्रयोग एक याट्टास्टिकीकृत खंडक अधिकल्प में किया जाना है। यदि प्रयोगिक त्रुटि की<br>स्वातंत्र कोटि 14 रखनी है तो खण्डक की संख्या होनी बाहिये                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Á         | 2                                                                                                                                                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| В         | 3                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| C         | 4                                                                                                                                                                         | a de la companya de l |  |
| D         | 5                                                                                                                                                                         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Q.No: 107 | From a population whose units are valued 5, 4, 3, 2, 1 a simple random sample of size 2 is taken without replacement. The standard error of its sample mean is            | किसी समष्टि जिसकी इकाइयों का मान 5,4,3,2,1 है से 2 आकार का एक प्रतिदर्श, प्रतिस्थापन रहित सरल<br>यादिच्छिक विधि से लिया जाता है। इस प्रतिदर्श के माध्य की मानक त्रुटि है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Á         | $\sqrt{0.6}$                                                                                                                                                              | $\sqrt{0.6}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| В         | $\sqrt{0.75}$                                                                                                                                                             | $\sqrt{0.75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| С         | $\sqrt{0.85}$                                                                                                                                                             | $\sqrt{0.85}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| D         | 1                                                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Q.No: 108 | For estimating the population proportion P by a simple random sample without replacement, let p be the sample proportion. The value of $V(p)$ is                          | माना कि प्रतिस्थापन रहित एक सरल साहुन्छिक प्रतिनयन द्वारा समष्टि अनुपात P के आक्लक के लिये प्रतिदर्ष<br>अनुपात P है। V(p) का मान है:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| A         | PQN/n(N-1)                                                                                                                                                                | PQN/n(N-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| В         | PQ(N-n)/(n-1)N                                                                                                                                                            | PQ(N-n)/(n-1)N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C         | P(N-n)/Q(N-1)                                                                                                                                                             | P(N-n)/Q(N-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| D         | PQ(N-n)/n(N-1)                                                                                                                                                            | PQ(N-n)/n(N-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Q.No: 109 | In stratified random sampling optimum allocation reduces to proportional allocation when strata have                                                                      | स्तारित याष्ट्रिक्डिक प्रतिचयन में इष्टतम् वितरण समानुषाती वितरण हो जाता है जबकि स्तरों में                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| A         | Equal size and equal standard deviation                                                                                                                                   | वरावर इकाइपाँ तथा वरावर मानक विचलन हो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| В         | Equal standard deviation and equal per unit cost                                                                                                                          | बराबर प्रति इकाई व्यय तथा बराबर सानक विचलन हों                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| C         | Equal standard deviation                                                                                                                                                  | बराबर मानक विचलन हो                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| D         | None of these                                                                                                                                                             | इनमें से कोई नहीं                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |

| Q.No: | L10 In 2 <sup>8</sup> factorial experiment with 5 blocks, the degrees of freedom of error is | पाँच खण्डों वाले एक 2 <sup>3</sup> बहुउपादानी प्रयोग में त्रुटि की स्वातंत्र कोटि है। |
|-------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| A     | 4                                                                                            | 4                                                                                     |
| В     | 9                                                                                            | 9                                                                                     |
| C     | 16                                                                                           | 16                                                                                    |
| 0     | 28                                                                                           | 28                                                                                    |

|           | Using stand     | ard not        | ations given that                        | मानक संकेतों म           | ने दिया है:       |                               |
|-----------|-----------------|----------------|------------------------------------------|--------------------------|-------------------|-------------------------------|
|           | Stratum         | W              | Si                                       | Stratum                  | W,                | Si                            |
| Q.No: 111 | 1               | 0.8            | 2                                        | 1                        | 0.8               | 2                             |
|           | 2<br>The Neymar | 0.2<br>ralloca | 4<br>tion of a sample of size 12 will be | <b>2</b><br>ते 12 आकार र | 0.2<br>शले प्रतिद | 4<br>इर्श का नीमेन नियतन होगा |
| 1         | (4,8)           |                |                                          | (4,8)                    |                   |                               |
| 3         | (6,6)           |                |                                          | (6,6)                    |                   |                               |
| 2         | (8,4)           |                |                                          | (8,4)                    |                   |                               |
| )         | None of th      | ese            |                                          | इनमें से कोई :           | नहीं              |                               |

| Q.No: 112 | Let the degrees of freedom for error sum of squares is 6. Then the order of the Latin square is $\ \ )$ | माना कि एक लेटिन वर्ग अभिकल्पना में त्रुटि वर्ग योग की स्वातंत्र कोटि 6 है तो लेटिन वर्ग का आकार है: |
|-----------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| A         | 3 X 3                                                                                                   | 3 X 3                                                                                                |
| 3         | 4X4                                                                                                     | 4 X 4                                                                                                |
| 3         | 5 X 5                                                                                                   | 5 X 5                                                                                                |
| D         | 6 X 6                                                                                                   | 6 X 6                                                                                                |

| Q.No: | 113 The statistic $T=\sum_{i=1}^{k} \left\{ \! rac{\left(0_i\!-\!e_i ight)^2}{e_i} \!  ight\}$ follows | प्रतिवर्षेज $T = \sum_{i=1}^k \left\{ \frac{(0_i {-} e_i)^2}{e_i}  ight\}$ का बंदन होता है: |
|-------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| A     | Chi-square distribution with (k-1)df                                                                    | काई स्क्रायर (к-1) स्वातंत्र कोटि का                                                        |
| В     | Chi-square distribution with k df                                                                       | काई स्कापर k स्वातंत्र कोटि का                                                              |
| C     | Chi-square distribution unit (k+1)df                                                                    | काई स्कायर (k+1) स्वातंत्र कोटिका                                                           |

| D         | None of these                                                                                                                | इनमें से कोई नहीं                                                                                               |  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
|           |                                                                                                                              |                                                                                                                 |  |
| Q.No: 114 | If $X_1$ , $X_2$ and $X_3$ are mutually independant standard normal variates, then the variance of $(X_1^2+X_2^2+X_3^2)$ is: | यदि $x_1$ , $x_2$ तथा $x_3$ परस्पर स्वतंत्र मानक प्रसामान्य चर है तो $({x_1}^2+{x_2}^2+{x_3}^2)$ का प्रसरण हैं: |  |
| A         | 2                                                                                                                            | 2                                                                                                               |  |
| В         | 3                                                                                                                            | 3                                                                                                               |  |
| c         | 6                                                                                                                            | 6                                                                                                               |  |
| D         | 12                                                                                                                           | 12                                                                                                              |  |
|           |                                                                                                                              |                                                                                                                 |  |
| Q.No: 115 | Let X be a chi-square variate with 5 degrees of freedom. Then $E(X^2)$ is                                                    | माना $x$ एक $s$ स्वातंत्र कोटि का काई वर्ग चर है तो $s$ $s$ तो $s$ $s$ मान है:                                  |  |
| Ā         | 50                                                                                                                           | 50                                                                                                              |  |
| В         | 35                                                                                                                           | 35                                                                                                              |  |
| С         | 10                                                                                                                           | 10                                                                                                              |  |
| D         | 5                                                                                                                            | 5                                                                                                               |  |
|           |                                                                                                                              |                                                                                                                 |  |
| Q.No: 116 | In stratified sampling you take a larger sample from the stratum if                                                          | स्तरित प्रतिचयन में आप एक स्तर से बड़ा प्रतिदर्श लेंगे यदि                                                      |  |
| A         | Stratum is larger                                                                                                            | स्तर बड़ा हो                                                                                                    |  |
| В         | Stratum is more variable internally                                                                                          | स्तर में आन्तरिक विविधता अधिक हो                                                                                |  |
| С         | Sampling is cheaper in the stratum                                                                                           | स्तर में प्रतिचयन सस्ता हो                                                                                      |  |
| D         | All of these                                                                                                                 | सभी सही है                                                                                                      |  |
|           |                                                                                                                              |                                                                                                                 |  |
| Q.No: 117 | The principle of local control is used to                                                                                    | स्थानीय नियंत्रण सिध्दांत का प्रयोग निम्न हेतु करते है:                                                         |  |
| A         | Reduce error variance                                                                                                        | त्रुटि प्रसरण कम करना                                                                                           |  |
| В         | Reduce the number of replications                                                                                            | पुनरावृत्ति संख्या कम करना                                                                                      |  |
| c         | Increase the number of plots                                                                                                 | भूखण्डों की संख्या बढ़ाना                                                                                       |  |
| D         | Reduce the degrees of freedom                                                                                                | स्वातंत्र कोटि कम करना                                                                                          |  |
|           |                                                                                                                              |                                                                                                                 |  |
| Q.No: 118 | A completely randomised design is trated as a                                                                                | पूर्णयता याइच्छिकीकृत अभिकल्पना का रूप है:                                                                      |  |

| A         | One way classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | एकथा वर्गीकरण                                                                                                            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| В         | Two way classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | द्विधा वर्गीकरण                                                                                                          |
| C         | Three way classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | त्रिधा वर्गीकरण                                                                                                          |
| D         | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | इनमें से कोई नहीं                                                                                                        |
| Q.No: 119 | In a randomised block design, we always have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | यादृच्छिक खण्डक अभिकल्पना में सदैव                                                                                       |
| Α         | Number of blocks = number of treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | खण्डकों की संख्या = उपचारों की संख्या                                                                                    |
| В         | Number of blocks < number of treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | खण्डकों की संख्या < उपचारों की संख्या                                                                                    |
| С         | Number of blocks > number of treatments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | खण्डकों की संख्या > उपचारों की संख्या                                                                                    |
| D         | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | इनमें से कोई नहीं                                                                                                        |
| Q.No: 120 | In a R.B.D which test is used for testing the equally of any two treatment means?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | याट्टिककृत खण्डक अभिकल्प में किन्हीं दो उपचारों के माध्य की समानता प्ररीक्षण के लिये किस प्ररीक्षण क<br>प्रयोग होता है ? |
| A         | F-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F परीक्षण                                                                                                                |
| В         | t-test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t परीक्षण                                                                                                                |
| С         | Chi-square test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | काई वर्ग परीक्षण                                                                                                         |
| D         | None of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | इनमें से कोई नहीं                                                                                                        |
| Q.No: 121 | The degree of freedom of F-ratio in a 5 x 5 latin square design are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 x 5 लैटिन वर्ग अभिकल्प में F- अनुपात का स्वातांत्र कोटि होता है:                                                       |
| A         | (4,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (4,8)                                                                                                                    |
| В         | (5,8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (5,8)                                                                                                                    |
| C         | (4,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (4,12)                                                                                                                   |
| D         | (5,12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (5,12)                                                                                                                   |
| Q.No: 122 | If the degrees of freedom of error sum of squares in a Latin square design is 20. The number of rows is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | किसी लैटिन वर्ग अभिकस्प में त्रुटि वर्ग योग की स्वातांत्र कोटि 20 है। पंक्तियों की संख्या है:                            |
|           | A Style Structure Control of the Con |                                                                                                                          |

| Q.No: 123 | In a randomised block design with 4 blocks, 6 treatments and one observation is missing. Then its error degree of freedom is | एक याट्टन्सिकीकृत खण्डक अभिकल्प में 4 खण्ड,6 उपचार है तथा एक प्रेक्षक लुप्त है। तब इसकी त्रुटि क<br>स्वातांत्र कोटि हैं: |
|-----------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| 4         | 17                                                                                                                           | 17                                                                                                                       |
| 3         | 16                                                                                                                           | 16                                                                                                                       |
|           | 15                                                                                                                           | 15                                                                                                                       |
| <b>.</b>  | 14                                                                                                                           | 14                                                                                                                       |

| 0         | Completely randomized design                                 | पूर्णतवा याद्रव्छिकीकृत अभिकल्प                       |
|-----------|--------------------------------------------------------------|-------------------------------------------------------|
| 2         | Randomised block design                                      | याष्ट्रिकेकीकृत खण्डक अभिकल्प                         |
| В         | 2 <sup>3</sup> factorial experiment                          | 2 <sup>3</sup> बहुउपादानी अभिकल्प                     |
| A         | Latin Square design                                          | लैटिन वर्ग अभिकल्प                                    |
|           | C C B It represents:                                         | C C B<br>यह संरचना किस अभिकल्प को दर्षाता है ?        |
| Q.No: 124 | B A C                                                        | B A C                                                 |
|           | The layout of three treatments A,B,C is given as $A \ B \ C$ | A,B,C तीन उपचारों का निम्न अभिन्यास दिया है:<br>A B C |

|           | Source    | d.f | SS |
|-----------|-----------|-----|----|
|           | Treatment | 3   | 5  |
| Q.No: 125 | Block     | 4   | 25 |
|           | Error     | X   | Υ  |
|           |           | Z   | 40 |

The values of X,Y and Z respectively are

| Α | 4,11,10  | 4,11,10 |
|---|----------|---------|
| В | 12,10,19 | 12,10,1 |
| C | 14,21,10 | 14,21,1 |

| स्त्रोत | स्वातंत्र कोटि | वर्गयोग |
|---------|----------------|---------|
| उपचार   | 3              | 5       |
| खण्डक   | 4              | 25      |
| त्रुटि  | X              | Y       |
| योग     | Z              | 40      |

X,Y तथा Z के मान हैं क्रमश:

| D         | None of these                                                                                                                                                                                                                          | इनमें से कोई नहीं                                                                                                                                                                       |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |                                                                                                                                                                                                                                        | 4 (1) 1 (4)                                                                                                                                                                             |
| Q.No: 126 | With usual notations, efficiency of cluster sampling in relation to simple random sampling is approximately the reciprocal of the following                                                                                            | चिन्हों के सामान्य अथौँ में गुच्छ प्रतिचयन की दक्षता सरल यादृष्टिक प्रतिचयन विधि के सापेक्ष निम्न में लगभ<br>किसके वितोम के बराबर होती है ?                                             |
| A         | 1+мр                                                                                                                                                                                                                                   | 1+мр                                                                                                                                                                                    |
| В         | 1+(M-1)p                                                                                                                                                                                                                               | 1+(M-1)ρ                                                                                                                                                                                |
| С         | 1+(M+1)ρ                                                                                                                                                                                                                               | 1+(M+1)ρ                                                                                                                                                                                |
| D         | (1+M)p                                                                                                                                                                                                                                 | (1+M)P                                                                                                                                                                                  |
| Q.No: 127 | A population consisting of 100 units is divided into two strata such that $N_1$ =60, $N_2$ =40, $S_1$ =2 and $S_2$ =3. If by Neyman Allocation $n_1$ =12, the sample size n is:                                                        | एक समष्टि जिसमें 100 इकाइयाँ है को दो स्तरों में इस प्रकार बाँटा गया है कि N1=60, N2=40, S1=2<br>तथा S2=3 यदि नेमेन नियतन से N1=12 है तो प्रतिचयन अमाप है:                              |
| A         | 24                                                                                                                                                                                                                                     | 24                                                                                                                                                                                      |
| В         | 12                                                                                                                                                                                                                                     | 12                                                                                                                                                                                      |
| С         | 6                                                                                                                                                                                                                                      | 6                                                                                                                                                                                       |
| D         | None of these                                                                                                                                                                                                                          | इनमें से कोई नहीं                                                                                                                                                                       |
|           | The randomised block design is preferred to completely randomised design when:                                                                                                                                                         | याद्दृच्छिकीकृत खण्डक अभिकल्प को पूर्णतया याद्दृच्छिकीकृत अभिकल्प पर वरीयता दी जाती है जब:                                                                                              |
| Α         | Treatments are heterogeneous                                                                                                                                                                                                           | कारक विषम है                                                                                                                                                                            |
| В         | Experimental units are heterogeneous                                                                                                                                                                                                   | प्रयोगिक इकाइयाँ विषम है                                                                                                                                                                |
| С         | Number of replications are equal for treatments                                                                                                                                                                                        | कारकों की पुनरावृत्ति संख्या बराबर है                                                                                                                                                   |
| D         | None of these                                                                                                                                                                                                                          | इनमें से कोई नहीं                                                                                                                                                                       |
| Q.No: 129 | In a 5X5 latin square design having one observation missing, the totals of row, column and treatment having the missing observations are 25, 40, 35 respectively and the grand total is 100. The estimate of missing observations is : | किसी 5XS लैटिन वर्ग अभिकल्पना में एक प्रेक्षण लुप्त है । लुप्त प्रेक्षण वाले पंक्ति,स्तम्भ तथा उपचार योग<br>क्रमथ: 25,40,35 है तथा पूर्ण योग 100 हैं । तब लुप्त प्रेक्षण का आक्लक हैं : |
| A         | 30                                                                                                                                                                                                                                     | 30                                                                                                                                                                                      |
| В         | 15                                                                                                                                                                                                                                     | 15                                                                                                                                                                                      |
| С         | 20                                                                                                                                                                                                                                     | 20                                                                                                                                                                                      |

25

900 units of a population are divided into two strata with  $N_1$ =100,  $N_2$ =200,  $S_1$ =2, Q.No; 130  $S_2$ =3, If a sample of size 20 have to be selected by Neyman's Allocation, the two sizes from strata are respectively किसी समष्टि को जिसमें 300 इकाइयाँ है, को वो स्तरों में इस प्रकार बाँग गया है कि N1=100, N2=200, S1=2, S2=3 यदि 20 अमाप का प्रतिवर्श चुनना है तो नेमेन नियतन से दो स्तरों से चुने गये प्रतिवर्षों का अमाप क्रमश्च है: A (8, 12) (8, 12) В (12, 8)(12, 8)C (5, 15) (5, 15) D (15, 5)(15, 5)

An unbiased estimator of population proportion of male in a City is p. Which is based on simple random sampling without replacement, N and n are respectively population and sample sizes. Then an unbiased estimator of variance of p is c p(1-p) when c is equal to

| A | $\frac{N-n}{N(n-1)}$ | $\frac{N-n}{N(n-1)}$ |  |
|---|----------------------|----------------------|--|
| В | $\frac{N-n}{Nn}$     | $\frac{N-n}{Nn}$     |  |
| C | $\frac{N-n}{(N-1)n}$ | $\frac{N-n}{(N-1)n}$ |  |
| D | None of these        | इनमें से कोई नहीं    |  |

| Q.No: 132 | given Mean sum of squares due to replication = 20 Mean sum of squares due to treatment = 20 Total sum of squares = 220 Then , mean sum squares due to error is: | एक प्राइक्किकीकृत खण्डक अभिकल्पना में 6 कारक है तथा प्रत्येक की पुनरावृत्ति की संख्या 5 है। निम्न दिय<br>है:<br>पुनरावृत्ति वर्ग योग का माध्य = 20<br>कारक वर्ग योग का माध्य = 20<br>कुत वर्ग योग = 220<br>तब तुटि के वर्ग योग का माध्य है: |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8         | 40                                                                                                                                                              | 40                                                                                                                                                                                                                                          |
| 3         | 20                                                                                                                                                              | 20                                                                                                                                                                                                                                          |
| 1         | 4                                                                                                                                                               | 4                                                                                                                                                                                                                                           |
|           | 2                                                                                                                                                               | 2                                                                                                                                                                                                                                           |
|           |                                                                                                                                                                 |                                                                                                                                                                                                                                             |
|           |                                                                                                                                                                 |                                                                                                                                                                                                                                             |

| Q.No: 133 | In a bivariete population the two regression lines are perpendicular to each other. When correlation coefficient r between the two variables is : | एक द्विचर समष्टि में दो समाश्रयन रेखायें एक दूसरे के लम्बवत होती है जब दोनों वरों के बीच सहसम्बन्ध गुणांक<br>r का मान होता है: |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| A         | r = 1                                                                                                                                             | r = 1                                                                                                                          |
| В         | r = 0                                                                                                                                             | r = 0                                                                                                                          |
| c         | r = -1                                                                                                                                            | t = -1                                                                                                                         |
| D         | 0 < r < 1                                                                                                                                         | 0 < r < 1                                                                                                                      |

| Q.No: 134 | For controlling quality of items in a production process where number of defects per item are counted. Which one of the following charts is used? | किसी उत्पादन प्रक्रिया में वस्तुओं के गुणता नियन्त्रण के लिये परीक्षा हेतु चुने हुये समूह में प्रत्येक वस्तु में दोष<br>की संख्या के लिये निम्न में किस चार्ट (या चित्र) का प्रयोग किया जाता है? |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A         | Mean Chart                                                                                                                                        | माध्य चित्र                                                                                                                                                                                      |
| В         | R Chart                                                                                                                                           | R चित्र                                                                                                                                                                                          |
| C         | p Chart                                                                                                                                           | P चित्र                                                                                                                                                                                          |
| D         | C Chart                                                                                                                                           | C चित्र                                                                                                                                                                                          |

| Q.No: | 135 CUSUM Chart is especially useful for detection of | CUSUM चित्र (या चार्ट) निम्न में किसके संधान के लियें विषेष रूप से उपयुक्त है ? |
|-------|-------------------------------------------------------|---------------------------------------------------------------------------------|
| A     | Small process shifts                                  | छोटी प्रक्रिया बदलाव                                                            |
| В     | Large process shifts                                  | बड़ी प्रक्रिया बदलाव                                                            |
| С     | Nonrandom patterns                                    | याष्ट्रच्छिक रहित रीति                                                          |
| D     | None of these                                         | इनमें से कोई नहीं                                                               |

| Q.No: 13 | A double sampling plan is                          | द्विप्रतिचयन योजना                                       |  |
|----------|----------------------------------------------------|----------------------------------------------------------|--|
| A        | Equally efficient as a single sampling plan        | एकल प्रतिचयन योजना के समान दक्ष होती है                  |  |
| В        | Usually more efficient then a single sampling plan | एकल प्रतिचयन योजना की अपेक्षा साधारणतः अधिक दक्ष होती है |  |
| C        | Never more efficient than a single sampling plan   | एकल प्रतिचयन योजना की अपेक्षा कभी नहीं अधिक दक्ष होती है |  |
| D        | None of these                                      | इनमें से कोई नहीं                                        |  |

| Q.No: 137 | Which of the following distribution is used to construct p-Chart? | निम्न में किस बंटन का प्रयोग p चित्र बनाने में किया जाता है ? |  |
|-----------|-------------------------------------------------------------------|---------------------------------------------------------------|--|
| A         | Binomial                                                          | <b>हि</b> पद                                                  |  |
| В         | Normal                                                            | प्रसांमान्य                                                   |  |

| С         | Poisson                                                                                                                                                                                                   | प्याँसा                                                                                                                                                                                                                           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D         | None of these                                                                                                                                                                                             | इनमें से कोई नहीं                                                                                                                                                                                                                 |
| Q.No: 138 | Process control is carried out:                                                                                                                                                                           | प्रक्रिया नियन्त्रण को क्रिया जाता है                                                                                                                                                                                             |
| A         | Before production                                                                                                                                                                                         | उत्पादन से पहले                                                                                                                                                                                                                   |
| В         | After production                                                                                                                                                                                          | उत्पादन के बाद                                                                                                                                                                                                                    |
| C         | During production                                                                                                                                                                                         | उत्पादन के समथ                                                                                                                                                                                                                    |
| D         | None of these                                                                                                                                                                                             | इनमें से कोई नहीं                                                                                                                                                                                                                 |
| Q.No: 139 | If the price index for the year 2015 is110.3 and the price index for the year 2005 is 98.4 then upto two decimal places, the purchasing power of money(in ₹) of 2005 compared to 2015 is                  | यदि 2015 में मूल्य सूचकांक 110.3 तथा 2005 में मूल्य सूचकांक 98.4 है तो दशमलव का दो स्थानों<br>तक,रूपये की क्रय क्षमता: 2005 में 2015 के सापेक्ष होगी                                                                              |
| A         | 1.12                                                                                                                                                                                                      | 1.12                                                                                                                                                                                                                              |
| В         | 1.25                                                                                                                                                                                                      | 1.25                                                                                                                                                                                                                              |
| С         | 1.35                                                                                                                                                                                                      | 1.35                                                                                                                                                                                                                              |
| D         | 0.89                                                                                                                                                                                                      | 0.89                                                                                                                                                                                                                              |
|           |                                                                                                                                                                                                           |                                                                                                                                                                                                                                   |
| Q.No: 140 | If the linear trend for the number of footballs sold per year at a shop is given by equation $Y=20+135t$ (the base period is 2008), then the forecast for number of foot balls to be sold in 2018 will be | एक दुकानदार द्वारा बेची गयी फुटवालों की प्रतिवर्ष संख्या की रेखीय उपनित को निम्न रेखा प्रदर्षित करती है।<br>Y=20+135t (यहाँ आधार वर्ष 2008 को माना गया है) तो उसके द्वारा 2018 में बेची जाने वाली फुटवालो<br>का पूर्वीनुमान होगा: |
| A         | 1150                                                                                                                                                                                                      | 1150                                                                                                                                                                                                                              |
| В         | 1370                                                                                                                                                                                                      | 1370                                                                                                                                                                                                                              |
| С         | 1550                                                                                                                                                                                                      | 1550                                                                                                                                                                                                                              |
| D         | None of these                                                                                                                                                                                             | इनमें से कोई नहीं                                                                                                                                                                                                                 |
| O No: 141 | Which control Chat utilizes Poisson distribution for during its control limits?                                                                                                                           | किस नियन्त्रण चित्र में नियन्त्रण सीमाओं को प्राप्त करने के लिये प्वाँसा बंटन को प्रयुक्त किया जाता है ?                                                                                                                          |
| A         | p - chart                                                                                                                                                                                                 | p - चित्र                                                                                                                                                                                                                         |
| В         | np - chart                                                                                                                                                                                                | np - चित्र                                                                                                                                                                                                                        |
| C         | c - chart                                                                                                                                                                                                 | c - चित्र                                                                                                                                                                                                                         |
| 7         |                                                                                                                                                                                                           |                                                                                                                                                                                                                                   |
| D         | $(\overline{\chi},\sigma)$ chart                                                                                                                                                                          | $(\overline{\chi},\sigma)$ चित्र                                                                                                                                                                                                  |

| Q.No: 142 | If the random variable X follows exponential distribution with mean 10 then P[X>10/X>5] is | यदि याट्टब्हिक चर X का ब्रंटन माध्य 10 वाला चरधातांकी ब्रंटन है तो P[X>10/X>5] होगी |
|-----------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 4         | √e                                                                                         | $\sqrt{e}$                                                                          |
| 3         | <b>1</b> /√e                                                                               | $1/\sqrt{e}$                                                                        |
| 1         | e                                                                                          | e e                                                                                 |
| )         | None of these                                                                              | इनमें से कोई नहीं                                                                   |
| Q.No: 143 | Index number I satisfies circular test if                                                  | सुचकांक । बक्रीय परीक्षण को सन्तुष्ट करता है यदि                                    |
| 4         | $\mathbf{I}_{ab} \ \mathbf{I}_{bc} = \mathbf{I}_{ac}$                                      | $\mathbf{I_{ab}} \ \mathbf{I_{bc}} = \mathbf{I_{ac}}$                               |
| 3         | $\mathbf{I_{ab}} \ \mathbf{I_{bc}} \ \mathbf{I_{cd}} = 1$                                  | $\mathbf{I_{ab}} \ \mathbf{I_{bc}} \ \mathbf{I_{cd}} = 1$                           |
| 0         | $\mathbf{I}_{ab}  \mathbf{I}_{bc}  \mathbf{I}_{cd}  \mathbf{I}_{da} = \mathbf{I}$          | $\mathbf{I}_{ab}\mathbf{I}_{bc}\mathbf{I}_{cd}\mathbf{I}_{da}=1$                    |
| )         | None of these                                                                              | इनमें से कोई नहीं                                                                   |
|           |                                                                                            |                                                                                     |
| Q.No: 144 | In Marshall-Edgeworth index number the weight used is:                                     | मार्श्वल-एजवर्थ सूचकांक में प्रयुक्त भार है।                                        |
| 4         | $\frac{q_0+q_1}{2}$                                                                        | $\frac{q_0+q_1}{2}$                                                                 |
| 3         | $\sqrt{q_0q_1}$                                                                            | $\sqrt{q_0q_1}$                                                                     |
| 2         | po qo                                                                                      | p <sub>Q</sub> q <sub>Q</sub>                                                       |
| )         | p <sub>1</sub> q <sub>1</sub>                                                              | p <sub>1</sub> q <sub>1</sub>                                                       |
|           |                                                                                            |                                                                                     |
|           | The secular trend of a time series is measured by                                          | किसी काल श्रेणी में दीर्घकालीन उपनित ज्ञात करने की विधि है::                        |
| 1         | Link Relative Method                                                                       | आपेक्षिक श्रंखला विधि                                                               |
| 3         | Moving Averages                                                                            | गविमान माध्य                                                                        |
| 3         | Variate Difference Method                                                                  | चर अन्तर विधि                                                                       |
| -         | MANUAL AND VIOLENCE AND A CONTROL OF THE PARTY.                                            |                                                                                     |

| 0.00   | 01, the value of I <sub>30</sub> /I <sub>20</sub> is | यदि 20 तथा 30 वर्ष की सही उम्रों के मध्य मृत्यु की औसत वार्षिक प्रायिकता 0.001 है तो I <sub>30</sub> /I <sub>20</sub> का मान<br>हैं: |
|--------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| A 0.99 | 99                                                   | 0.999                                                                                                                                |
| B 0.99 | 9                                                    | 0.99                                                                                                                                 |
| C 0.90 | 0                                                    | 0.90                                                                                                                                 |
| D 0.00 | 01                                                   | 0.001                                                                                                                                |

| is taken to be सामान्यतः किसी जीवन सारिणी में मूलांक (I <sub>0</sub> ) को लिया जाता है: |
|-----------------------------------------------------------------------------------------|
|                                                                                         |
| 10000                                                                                   |
| 100000                                                                                  |
| 1000000                                                                                 |
|                                                                                         |

| Q.No: 148 | In a life table, for calculation of expectancy of life at age $\boldsymbol{x},$ we use the formula: | किसी जीवन सारणी में उम्र x पर जीवन प्रत्याशा की गणना करने के लिये हम किस सूत्र को प्रयोग में लाते हैं ? |
|-----------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| A         | $e_x^0 = \frac{T_x}{l_x}$                                                                           | $e_x^0 = \frac{T_x}{l_x}$                                                                               |
| В         | $e_x^0 = \frac{T_x}{L_x}$                                                                           | $e_x^0 = \frac{T_x}{L_x}$                                                                               |
| С         | $e_x^0 = \frac{L_x}{L_x + 1}$                                                                       | $e_x^0 = \frac{L_x}{L_x + 1}$                                                                           |
| D         | $e_x^0 = T_x L_x$                                                                                   | $e_x^0 = T_x L_x$                                                                                       |

| The sum of annual age-specific fertility rates over the whole reproduction ages is known as | सम्पूर्ण जननीय उम्रों पर वार्षिक उम्र-विषेष उर्वरता दरों के योग को कहते हैं:   |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| General fertility rate                                                                      | सामान्य उर्वरता दर                                                             |
| Crude birth rate                                                                            | अशुद्ध जन्म दर                                                                 |
| Total fertility rate                                                                        | कुल उर्वरता दर                                                                 |
| Net reproduction rate                                                                       | शुद्ध पुनरूत्पादन दर                                                           |
|                                                                                             | known as<br>General fertility rate<br>Crude birth rate<br>Total fertility rate |

| Q.No: 1 | A human population will have a tendency to increase in size of net reproduction rate is | एक मानव समष्टि आकार में बढ़ने की प्रवृत्ति रखती है पवि शुद्ध पुनरूत्वादन दर |
|---------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| A       | Greater than 1                                                                          | 1 से अधिक है                                                                |
| 3       | Less than 1                                                                             | 1 से कम है                                                                  |
| 7       | Equal to 1                                                                              | 1 के बराबर है                                                               |
| D       | Zero                                                                                    | शून्य है                                                                    |

| Q.No: 15 | 1 Periodogram analysis is a method of determining | पीरियोडोग्राम विश्लेषण किसको जानने की | एक विधि है 🤋 |
|----------|---------------------------------------------------|---------------------------------------|--------------|
| A        | Seasonal variation                                | मौसामी विविधता                        |              |
| B        | Cyclical variation                                | चक्रीय विविधता                        |              |
| C        | Random component                                  | गाट्टब्लिक अवयव                       |              |
| D        | Secular trend                                     | दीर्घकालिक उपनति                      |              |

| Q.No: 152 | Fisher's Z transformation is used when we wish to test the equality of | फिश्चर के Z रूपान्तर का उपयोग तब किया जाता है जब हम निम्नलिखित का समानता की प्ररीक्षण करना चाहते<br>हैं |
|-----------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| A         | Variances of k populations                                             | k समष्टियों के प्रसरणों का                                                                              |
| В         | Means of k populations                                                 | k समष्टियों के माध्यों का                                                                               |
| C         | Skewness of two populations                                            | दो समष्टियों की विषमता का                                                                               |
| D         | Correlation coefficients of k populations                              | k समष्टिपों के सहसम्बंध गुणांकों का                                                                     |

The following table gives the frequency distribution of number of live births born to women in the age group 15-45 years  $\,$ 

Q.No: 153 Age group Number of women Number of live births
15-19 20000 600
20-24 18000 1200
25-29 14000 800
30-35 8000 96

The value of General Fertility Rate (GFR) based on the above data is:

15 से 45 वर्ष की महिलाओं द्वारा जन्में बच्चों का निम्न बारबार बंटन है:

| वर्ष समूह | महिलाओं की संख्या | जन्में बच्चों की संख्या |
|-----------|-------------------|-------------------------|
| 15-19     | 20000             | 600                     |
| 20-24     | 18000             | 1200                    |
| 25-29     | 14000             | 800                     |
| 30-45     | 8000              | 96                      |

उपरोक्त के आधार पर सामान्य उर्वरता दर हैं:



| A | 44.933 | 44.933 |  |
|---|--------|--------|--|
| В | 89.866 | 89.866 |  |
| C | 449.33 | 449.33 |  |
| D | 898.66 | 898.66 |  |

| O No. 1 | 54 Consumer price index numbers reveal the state of | उपभोक्ता मूल्य सूचकांक दर्शाता है । स्थिति              |  |
|---------|-----------------------------------------------------|---------------------------------------------------------|--|
| Q.NO. 1 | 54 Consumer price index numbers reveal the state of | उपमावता मूल्प सूचकाक देशाता है । स्थित                  |  |
| 4       | Inflation only                                      | मात्र मुद्रा स्फीति की                                  |  |
| В       | Deflation only                                      | मात्र मुद्रा हास की                                     |  |
| C       | Both (Inflation only) and (Deflation only)          | दोनो (मात्र मुद्रा स्फीति की) तथा (मात्र मुद्रा हास की) |  |
| D       | Neither (Inflation only) nor (Deflation only)       | न (मात्र मुद्रा स्फीति की) न (मात्र मुद्रा हास की)      |  |

| Q.No: 1 | 55 Sample registration for collecting vital statistics is     | जैव सांख्यिकी के एकत्रीकरण में प्रतिचयन पंजीकरण                        |
|---------|---------------------------------------------------------------|------------------------------------------------------------------------|
| A       | A fixed panel survey                                          | एक स्थिर पैनल सर्वेक्षण है                                             |
| В       | A Cross-sectional survey                                      | एक क्रास-सेक्शनल सर्वेक्षण है                                          |
| С       | Both (A fixed panel survey) and (A Cross-sectional survey)    | दोनों (एक स्थिर पैनल सर्वेक्षण है) तथा (एक क्रास-सेक्शनल सर्वेक्षण है) |
| D       | Neither (A fixed panel survey) nor (A Cross-sectional survey) | न (एक स्थिर पैनल सर्वेक्षण है) न (एक क्रास-संक्यानल सर्वेक्षण है)      |

| Q.No: 156 | In a time series if the demand of warm clothes is increased during winters, it is an example of $% \left\{ 1,2,\ldots,n\right\}$ | किसी काल श्रेणी में यदि जाड़ों में गर्म कपड़ों की माँग बढ़ती हैं तो यह उदाहरण है |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| A         | Secular trend                                                                                                                    | दीर्घकालिक उपनित का                                                              |
| В         | Seasonal variation                                                                                                               | मौसमी विविधता का                                                                 |
| С         | Cyclical variation                                                                                                               | चक्रीय विविधता का                                                                |
| D         | None of these                                                                                                                    | इनमें से कोई नहीं                                                                |

| Q.No: 157 | Which type of variation is found in a statistically controlled process? | एक सांख्यिकीय रूप से नियन्तित प्रक्रिया में किस प्रकार की विविधता पायी जाती है ? |
|-----------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| A         | Non - random                                                            | याष्ट्रच्छिक रहित                                                                |
| В         | Random                                                                  | पाट्टिक                                                                          |
| С         | Normal                                                                  | प्रसामान्य                                                                       |
| D         | None of these                                                           | इनमें से कोई नहीं                                                                |

| Q.No: 15 | 8 Control charts for variables are based on which of the following distribution ? | चरों के नियन्त्रित चित्र किस बंटन पर आधारित हैं ? |  |
|----------|-----------------------------------------------------------------------------------|---------------------------------------------------|--|
| A        | Normal                                                                            | प्रसामान्य                                        |  |
| В        | Binomial                                                                          | द्विपद                                            |  |
| c        | Poisson                                                                           | प्याँसा                                           |  |
| D        | None of these                                                                     | इनमें से कोई नहीं                                 |  |

| Q.No: 1 | 59 A lock out in a factory for a month represents which component of time-series? | किसी फैक्द्री में एक महीने तक ताला बन्दी काल श्रेणी के किस अवयव को दर्शाती है ? |
|---------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| A       | Cyclic Movement                                                                   | चक्रीय संचलन                                                                    |
| 3       | Seasonal Movement                                                                 | मौसमी संचलन                                                                     |
|         | Secular Movement                                                                  | दीर्घकालिक उपनति                                                                |
| D       | Irregular Movement                                                                | अनियमित संचलन                                                                   |

| Q.No: 160 | Under which one of the following conditions will the outcome of an experiment classified as success E or failure $\overline{E}$ follow a Bernoulli distribution? | किसी प्रयोग की सफलता E या असफलता $E$ के रूप में वर्गीकृत परिणाम का बंदन निम्न प्रतिबन्धों में से कौन से एक के तहत् बर्नोली बंदन होगा ? |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Ā         | $P(E) = \frac{1}{2}$                                                                                                                                             | $P(E) = \frac{1}{2}$                                                                                                                   |
| В         | P(E) = 0                                                                                                                                                         | P(E) = 0                                                                                                                               |
| С         | P(E) = 1                                                                                                                                                         | P(E) = 1                                                                                                                               |
| D         | P(E) remains constant in all trials                                                                                                                              | सभी अभिप्रयोगों में P(E) अचर रहता है                                                                                                   |

| Q.No: 161 | Fisher's ideal index number satisfies which of the following tests? | फि  | शर आदर्श सूचकांक निम्न में कौन से परिक्षणों को सन्तुष्ट करता है ? |  |
|-----------|---------------------------------------------------------------------|-----|-------------------------------------------------------------------|--|
| A         | Circular test only                                                  | चढ़ | ीय परीक्षण मात्र                                                  |  |
| В         | Time reversal test only                                             | Φ   | लोक्कमन परीक्षण मात्र                                             |  |
| С         | Both (Circular test only) and (Time reversal test only)             | दो  | ों (चक्रीय परीक्षण मात्र) तथा (कालोत्क्रमन परीक्षण मात्र)         |  |
| D         | Neither (Circular test only) nor (Time reversal test only)          | न   | चक्रीय परीक्षण मात्र) न (कालोत्क्रमन परीक्षण मात्र)               |  |

Q.No: 162 Let X be a continuous random variable with cumulating distribution function F(x), Y माना X एक सतत् चर है जिसका संचयी बंटन फलन F(x) है। Y को परिभाषित किया जाता है Y=F(x) तो Y is defined as Y=F(x). Then standard deviation of Y will be



| Á | $\frac{1}{2}$ | $\frac{1}{2}$     |  |
|---|---------------|-------------------|--|
| B | 1/2√3         | 1/2√3             |  |
| C | 1/12          | 1/12              |  |
| D | None of these | इनमें से कोई नहीं |  |

| Q.No: 163 | The number of non zero characteristic roots of a balanced incomplete block design with parameters (b,v,k,r, $\lambda$ ) is | संतुलित अपूर्ण खण्डक अभिकल्पना, जिसके प्राचल (b,v,k,r, $\lambda$ ) आव्यूह के शून्य रहित अभिलाक्षणिक मूलों<br>की संख्या होती है: |
|-----------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Α         | λb/r                                                                                                                       | λb/r                                                                                                                            |
| В         | λь/κ                                                                                                                       | λь /к                                                                                                                           |
| С         | λr/k                                                                                                                       | λr/k                                                                                                                            |
| D         | λv/k                                                                                                                       | λv / k                                                                                                                          |

The layout of a 2<sup>3</sup> factorial experiment is given as

|           | Replica | tion -1 | Repl    | ication-2 |
|-----------|---------|---------|---------|-----------|
|           | Block-1 | Block-2 | Block-3 | Block-4   |
| Q.No: 164 | (1)     | a       | abc     | b         |
| Q.NO. 104 | ab      | b       | bc      | С         |
|           | abc     | ac      | а       | ac        |
|           | C       | bc      | (1)     | ab        |

The interactions confounded in two replicates are respectively

| Α | AB, ABC       |  |
|---|---------------|--|
| В | AB, AC        |  |
| c | AC, BC        |  |
| D | None of these |  |

Q.No: 165 In a  $2^3$  factorial experiment with 10 replications, the degrees of freedom due to

एक 2<sup>3</sup> बहु उपादानी अभिप्रयोग मे, जिसमें 10 पुनरावृत्तियाँ है, त्रुटि स्वातंत्र कोटि है:

2<sup>3</sup> बहुउपादानी प्रयोग का अभिन्यास निम्न प्रकार दिया है

खण्डक -2

b

ac

पुनरावृत्ति-2

खण्डक-४

b

ac

ab

खण्डक-3

abc

bc

(1)

पुनरावृत्ति-1

पुनरावृत्ति 1 तथा 2 में क्रमशः अन्योत्य है:

खण्डक -1

(1)

ab abc

AB, ABC AB, AC AC, BC इनमें से कोई नहीं

|   | error is |    |  |
|---|----------|----|--|
| Α | 79       | 79 |  |
| В | 63       | 63 |  |
| C | 59       | 59 |  |
| D | 19       | 19 |  |

| Q.No: 166 | Which of the following distribution has a pair of degrees of freedom? | निम्न में कौन सा बंटन युग्म स्वातंत्र कोटि वाला है ? |  |
|-----------|-----------------------------------------------------------------------|------------------------------------------------------|--|
| A         | Normal                                                                | प्रसामान्य                                           |  |
| 3         | Binomial                                                              | द्विपद                                               |  |
| 2         | Chi-Square                                                            | काई वर्ग                                             |  |
| 0         | None of these                                                         | इनमें से कोई नहीं                                    |  |

| С         | Approaches normality as sample size increases                               | प्रसामान्य की ओर अग्रसर होता है जैसे-जैसे प्रतिदर्श आकार बढ़ता है        |
|-----------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|
| В         | Appears normal only when population size is greater than 100                | केवल प्रसामान्य प्रतीत होता है जब समष्टि अमाप 100 से अधिक है             |
| A         | Is always normal                                                            | सदैव प्रसामान्य है                                                       |
| Q.No: 167 | The central limit theorem assures us that the sampling distribution of mean | केन्द्रीय सीमा प्रमेय हमें यह आश्वस्त करता है कि माध्य का प्रतिदर्श बंटन |

| Q.No: 168 | If in a symmetric distribution first quartile is 54.52 and third quartile is 78.86, the median of this distribution will be | यदि किसी सम बंटन में प्रथम चतुर्थांक 54.52 है तथा तृतीय चतुर्रथांक 78.86 है तो इस बंटन की माध्यिक<br>होगी: |
|-----------|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| A         | 12.17                                                                                                                       | 12.17                                                                                                      |
| 3         | 39.43                                                                                                                       | 39.43                                                                                                      |
| С         | 66.69                                                                                                                       | 66.69                                                                                                      |
| D C       | 133.38                                                                                                                      | 133.38                                                                                                     |

| Which one of the following is not possible for a binominal distribution ? | निम्न में से कौन द्विपद बंटन के लिये सम्भव नहीं है ? |                                                                                               |
|---------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Mean = 2, Variance = 3/2                                                  | माध्य = 2, प्रसरण = 3/2                              |                                                                                               |
| Mean = 5, Variance = 9                                                    | माध्य = 5, प्रसरण = 9                                |                                                                                               |
| Mean = 10, Variance = 5                                                   | माध्य = 10, प्रसरण = 5                               |                                                                                               |
|                                                                           | Mean = 2, Variance = 3/2<br>Mean = 5, Variance = 9   | Mean = 2, Variance = 3/2 माध्य = 2, प्रसरण = 3/2 Mean = 5, Variance = 9 माध्य = 5, प्रसरण = 9 |

प्रतिचयन

Q.No: 174 If a systematic sample of size 10 taken from a population of size 100, the 27<sup>th</sup>,

D

Sampling

यदि 100 आकार के किसी समष्टि से 10 आकार के लिये गये एक क्रमबंद्ध प्रतिदर्श में समष्टि की 27वीं, 87वीं,



|           | $87^{th},57^{th},97^{th},$ and $7^{th},$ units of the population are included, then rest of the five units of the sample are | 57वीं, 97वीं तथा 7वीं इकाइयाँ शामिल हुयी है, तो प्रतिदर्श की श्रेष पाँच इकाइयाँ है                                  |
|-----------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| A         | 17 <sup>th</sup> , 67 <sup>th</sup> , 37 <sup>th</sup> , 77 <sup>th</sup> and 47 <sup>th</sup> units of population           | समष्टि की 17 वीं, 67 वीं, 37 वीं, 77 वीं तथा 47 वीं इकाइयाँ                                                         |
| В         | 10 <sup>th</sup> , 20 <sup>th</sup> , 30 <sup>th</sup> , 40 <sup>th</sup> and 50 <sup>th</sup> units of the population       | समष्टि की 10 वीं, 20 वीं, 30 वीं, 40 वीं तथा 50 वीं इकाइयाँ                                                         |
| С         | 1st, 2 <sup>nd</sup> , 3 <sup>rd</sup> , 4 <sup>th</sup> , and 5 <sup>th</sup> units of the population                       | समष्टि की पहली,दूसरी,तीसरी,चौथी तथा पाँचवीं इकाइयाँ                                                                 |
| D         | Any five units of the population                                                                                             | समष्टि की कोई भी पाँच इकाइयाँ                                                                                       |
| Q.No: 175 | Let X be uniformly distributed over the interval [1, 3], then value of $x_0$ such that Pr [X<2 + $x_0$ ] = 3/4, is           | मान लीजिये कि $x$ अन्तराल [1, 3] में समरूप से बंदित हैं, तो $x_0$ का मान इस प्रकार कि Pr [ $x<2+x_0$ ] = $3/4$ होगा |
| A         | 3/4                                                                                                                          | 3/4                                                                                                                 |
| В         | 3/2                                                                                                                          | 3/2                                                                                                                 |

3/2 1/2

इनमें से कोई नहीं

1/2 None of these

| Q.No: 176 | A distribution has variance 16, $\gamma_1$ = 1 and $\beta_2$ = 4. Then, third and fourth central moments are respectively | किसी बंटन का प्रसरण 16, $\gamma_1$ = 1 तथा $\beta_2$ = 4 है तो तीसरा तथा चौथा आपूर्ण क्रमशः है: |
|-----------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| A         | (64, 1020)                                                                                                                | (64, 1020)                                                                                      |
| В         | (60, 1024)                                                                                                                | (60, 1024)                                                                                      |
| С         | (65, 1024)                                                                                                                | (65, 1024)                                                                                      |
| n         | (64 1034)                                                                                                                 | (64 1024)                                                                                       |

|   | The standard deviation of two variables are $\sigma_1=2$ and $\sigma_2=3$ and the correlation. Coefficient between them is 1/2. If $\theta$ is the acute angle between the lines of regression for these variables, then values of tan $\theta$ is: | दो चरों के मानक विचल्त $\sigma_1=2$ तथा $\sigma_2=3$ हैं तथा उनके मध्य सहसम्बंध गुणांक $1/2$ है। यदि इन चरों की समाश्रयण रेखाओं के बीच का न्यून कोण $\theta$ है, तो $\tan\theta$ का मान है: |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| А | 7/13                                                                                                                                                                                                                                                | 7/13                                                                                                                                                                                        |
| В | 9/19                                                                                                                                                                                                                                                | 9/19                                                                                                                                                                                        |
| c | 9/13                                                                                                                                                                                                                                                | 9/13                                                                                                                                                                                        |
| D | 6/19                                                                                                                                                                                                                                                | 6/19                                                                                                                                                                                        |

Q.No: 178 Let X and Y be two random variables such that Y = (X-a)/b where a and b (> 0) are मान लीजिये X तथा Y दो याहच्छिक चर इस प्रकार है कि Y = (X-a)/b जहाँ a तथा b (> 0) स्थिरांक है। तो constants. Then, which of the following is true?

| A | Mean(X) = b Mean(Y)                               | माध्य (X)= b माध्य (Y)          |  |
|---|---------------------------------------------------|---------------------------------|--|
| В | Standard Deviation (X) = Standard Deviation (Y)   | मानक विचलन (X) = मानक विचलन (Y) |  |
| C | Mean (X) = Mean (Y)                               | माध्य (X) = माध्य (Y)           |  |
| D | Standard Deviation (X) = b Standard Deviation (Y) | मानक विचलन (X) = मानक विचलन (Y) |  |

| Q.No: | 179 Index numbers measure                              | सूचकांक मापते हैं                                         |
|-------|--------------------------------------------------------|-----------------------------------------------------------|
| A     | Relative Change Only                                   | सापेक्ष परिवर्तन मात्र                                    |
| В     | Absolute Change only                                   | पूर्ण परिवर्तन मात्र                                      |
| Ċ     | Both (Relative Change Only) and (Absolute Change only) | (सापेक्ष परिवर्तन मात्र) तथा (पूर्ण परिवर्तन मात्र) दोनों |
| D     | None of these                                          | इनमें से कोई नहीं                                         |

| Q.No: 180 | Loss of working days due fire in a factory is associated to whom in the following? | किसी कारखाने के कार्य दिवसों में आग लगने के कारण हुयी हानि निम्न में किससे सम्बन्धित है |
|-----------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| A         | Trend                                                                              | उपनित                                                                                   |
| 3         | Seasonal component                                                                 | मौसमी संघटक                                                                             |
| 2         | Cyclical component                                                                 | चक्रीय संघटक                                                                            |
| D         | Random component                                                                   | अनियमित संघटक                                                                           |

| Q.No: | 181 Irregular variations in a time series are caused by | काल श्रेणी में अनियत विचरणें का कारण होते है |
|-------|---------------------------------------------------------|----------------------------------------------|
| Α     | Strikes                                                 | हड़ताल                                       |
| В     | Epidemics                                               | महामारी                                      |
| C     | Floods                                                  | बाढ़                                         |
| D     | All of these                                            | सभी सही है                                   |

| Q.No: | 182 A time series consists of | काल श्रेणी निर्मित होती है     |  |
|-------|-------------------------------|--------------------------------|--|
| A     | Long term fluctuations only   | मात्र दीर्घकालीन उच्चावचनों से |  |
| В     | Short term fluctuations only  | मात्र अल्पकालीन उच्चावचनों से  |  |
| 3     | Irregular variations only     | मात्र अनियत विचरणें से         |  |
| D     | All of these                  | सभी सही है                     |  |

| Q.No: 183 | Link relative means the ratio of a value to its:                           | श्रृंखतित आपेक्षक का अभिप्राय होता है,मान का अनुपात उसके                   |
|-----------|----------------------------------------------------------------------------|----------------------------------------------------------------------------|
| A         | Succeeding value                                                           | उत्तरवर्ती मान से                                                          |
| В         | Preceding value                                                            | पूर्ववर्ती मान से                                                          |
| С         | Both (Succeeding value) and (Preceding value)                              | (उत्तरवर्ती मान से ) तथा (पूर्ववर्ती मान से) दोनों                         |
| D         | Neither (Succeeding value) nor (Preceding value)                           | न (उत्तरवर्ती मान से ) न (पूर्ववर्ती मान से)                               |
| Q.No: 184 | Which one of the following is not a vital event?                           | निम्न में कौन एक जीवन घटना से सम्बन्धि नहीं है ?                           |
| A         | Birth                                                                      | जन्म                                                                       |
| В         | Marriage                                                                   | विवाह                                                                      |
| С         | Education                                                                  | शिक्षा                                                                     |
| D         | Migration                                                                  | माइग्रेशन                                                                  |
|           |                                                                            |                                                                            |
| Q.No: 185 | Vital rates are expressed as                                               | प्राणभूत दरों को प्रदार्शित किया जाता है:                                  |
| A         | Percentages                                                                | प्रतिशत में                                                                |
| В         | Per thousand                                                               | प्रति हजार में                                                             |
| С         | Per million                                                                | प्रति दस लाख में                                                           |
| D         | None of these                                                              | इनमें से कोई नहीं                                                          |
|           |                                                                            |                                                                            |
| 0         | The probability of a death of a person between ages x and (x+1) is called: | x तथा (x+1) वर्ष के बीच में व्यक्ति की मृत्यु की प्रायिकता को कहा जाता है: |
| A         | Age specific death rate                                                    | आयु विशिष्ट मृत्यु दर                                                      |
| В         | Infant mortality rate                                                      | बाल मृत्यु दर                                                              |
| C         | Central mortality rate                                                     | केन्द्रीय मृत्यु दर                                                        |
| D         | None of these                                                              | इनमें से कोई नहीं                                                          |
| Q.No: 187 | $\overline{x}$ and R Chart are used for                                    | $\overline{\chi}$ तथा R चार्ट प्रयुक्त होते हैं:                           |
| A         | Production control                                                         | उत्पाद नियन्त्रण के लिये                                                   |

| 0         | None of these                                                                             |                                                                               |
|-----------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
|           |                                                                                           | इनमें से कोई नहीं                                                             |
| Q.No: 188 | Quality of a manufactured product is measured by                                          | निर्मित उत्पाद की गुणता नापी जाती है:                                         |
| A         | Numerical measurement only                                                                | मात्र संख्यात्मक मापन द्वारा                                                  |
| В         | Attribute measurement only                                                                | मात्र गुणता मापन द्वारा                                                       |
| С         | Both (Numerical measurement only) and (Attribute measurement only)                        | दोनों (मात्र संख्यात्मक मापन द्वारा) तथा (मात्र गुणता मापन द्वारा)            |
| D         | Neither (Numerical measurement only) nor (Attribute measurement only)                     | न (मात्र संख्यात्मक मापन द्वारा) न (मात्र गुणता मापन द्वारा)                  |
| Q.No: 189 | np chart is a control chart for                                                           | किसके लिये np चित्र एक नियन्त्रण चित्र है ?                                   |
| A         | Number of defects per unit                                                                | प्रति इकाई दोषों की संख्या                                                    |
| В         | Fraction defectives                                                                       | दोषपूर्ण का अंश                                                               |
| С         | Number of defectives                                                                      | दोषपूर्ण की संख्या                                                            |
| D         | All of these                                                                              | सभी सही है                                                                    |
|           |                                                                                           |                                                                               |
| Q.No: 190 | A typical control chart consists of                                                       | एक विशिष्ट नियन्त्रण चित्र में होती है:                                       |
| A         | Two horizontal lines                                                                      | दो क्षैतिज रेखायें                                                            |
| В         | Three horizontal lines                                                                    | तीन क्षैतिज रेखायें                                                           |
| С         | Five horizontal lines                                                                     | पाँच क्षैतिज रेखायें                                                          |
| D         | None of these                                                                             | इनमें से कोई नहीं                                                             |
|           |                                                                                           |                                                                               |
| Q.No: 191 | If the lower control limit is negative in control Charts for attributes , it is taken as: | यदि गुणों के चित्र में न्यूनतम नियन्त्रण सीमा ऋणात्मक है तो इसको लिया जाता है |
| A         | 1                                                                                         | 1                                                                             |
| В         | As it is                                                                                  | जैसी है वैसी ही                                                               |
|           | 1.5                                                                                       | 1.5                                                                           |
| D         | 0                                                                                         | 0                                                                             |
|           | Variation in the quality of manufactured product is tolerable due to                      | निर्मित उत्पाद की गुणता में परिवर्तन निम्न के कारण सहनीय होता है:             |

| A         | Chance causes only                                                                                                                                                                                 | संयोग मात्र                                                                                                                                                     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| В         | Assignable causes only                                                                                                                                                                             | निर्धारणीय मात्र                                                                                                                                                |
| С         | Both (Chance causes only) and (Assignable causes only)                                                                                                                                             | (संयोग मात्र) तथा (निर्धारणीय मात्र) दोनो                                                                                                                       |
| D         | Neither (Chance causes only)nor (Assignable causes only )                                                                                                                                          | नहीं (संयोग मात्र) नहीं (निर्धारणीय मात्र)                                                                                                                      |
| Q.No: 193 | A group of moving average consists of                                                                                                                                                              | चल औसत का एक समूह होता है                                                                                                                                       |
| A         | 5 years period                                                                                                                                                                                     | 5 वर्ष की अवधि का                                                                                                                                               |
| В         | 3 years period                                                                                                                                                                                     | 3 वर्ष की अवधि का                                                                                                                                               |
| c         | A period which form a cycle                                                                                                                                                                        | एक अवधि जो एक चक्र बनाता है                                                                                                                                     |
| D         | None of these                                                                                                                                                                                      | इनमें से कोई नहीं                                                                                                                                               |
| Q.No: 194 | In which of give following conditions, Poison's distribution would be a good approximation of binominal distribution $b(x; n,p)$ ?                                                                 | निम्न में किसकी परिस्थिति में प्वाँसा बंटन द्विपद बंटन b(x; n,p) का एक अच्छा सन्निकट होगा ?                                                                     |
| A         | n = 200, q = 0.98                                                                                                                                                                                  | n = 200, q = 0.98                                                                                                                                               |
| В         | n = 400, p = 0.52                                                                                                                                                                                  | n = 400, p = 0.52                                                                                                                                               |
| С         | n = 10, p = 0.03                                                                                                                                                                                   | n = 10, p = 0.03                                                                                                                                                |
| D         | n = 40, q = 0.79                                                                                                                                                                                   | n = 40, q = 0.79                                                                                                                                                |
| Q.No: 195 | If E1 and E2 are two independent events such that $P(E1)=E(E2)=0.8$ , then $P(E1 \cup E2)$ is equal to                                                                                             | यदि E1 तथा E2 दो खतंत्र घटनायें इस प्रकार है कि P(E1)=E(E2)=0.8 तो P(E1∪E2) का मान है                                                                           |
| A         | 0.64                                                                                                                                                                                               | 0.64                                                                                                                                                            |
| В         | 0.80                                                                                                                                                                                               | 0.80                                                                                                                                                            |
| c         | 0.96                                                                                                                                                                                               | 0.96                                                                                                                                                            |
| D         | None of these                                                                                                                                                                                      | इनमें से कोई नहीं                                                                                                                                               |
| Q.No: 196 | Let X and Y be two random variables such that mean of each is 10 and variances are 1 and 10 respectively. If correlation coefficient between them is 1/4, then the covariance between 3X and 5Y is | माना X तथा Y , जिनमें प्रत्येक का माध्य 10 तथा प्रसरण क्रमश: 1 तथा 9 है,दो याट्टिकक चर हैं। इन चरों क<br>सहसम्बंध गुणांक 1/4 है। तब 3X तथा 5Y का सहप्रसरण होगा: |
| A         | 34                                                                                                                                                                                                 | 34                                                                                                                                                              |
| В         | 15.75                                                                                                                                                                                              | 15.75                                                                                                                                                           |

| D        | None of these                                                                                                                   | इनमें से कोई नहीं                                                                                  |
|----------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| .No: 197 | In case of SRSwor if $S^2 = \sum_i^n \! \left(y_i - \overline{Y}\right)^2 \! / (N-1)$ then $V\left(\overline{y}\right)$ will be | SRSwor के लिए यदि $S^2 = \sum_i^n (y_i - \overline{Y})^2/(N-1)$ है तो $\vee$ $(\overline{y})$ होगा |
| ě.       | $\frac{N-n}{N} \frac{S^2}{n}$                                                                                                   | $\frac{N-n}{N}\frac{S^2}{n}$                                                                       |
|          | $\frac{N-1}{N}\frac{S^2}{n}$                                                                                                    | $\frac{N-1}{N}\frac{S^2}{n}$                                                                       |
|          | $\frac{N-1}{n-1}\frac{S^2}{N}$                                                                                                  | $\frac{N-1}{n-1}\frac{S^2}{N}$                                                                     |
| D        | $\frac{N-n}{n-1} \frac{S^2}{N}$                                                                                                 | $\frac{N-n}{n-1} \frac{S^2}{N}$                                                                    |

| correctly. Then this distribution has     | 30 विद्यार्थियों का spelling परीक्षण किया गया। प्रत्येक ने 10 में से 8 शब्द सही लिखे इस बंटन का ? |
|-------------------------------------------|---------------------------------------------------------------------------------------------------|
| Zero standard deviation                   | मानक विचलन शून्य है                                                                               |
| Zero mean                                 | माध्य शून्य है                                                                                    |
| Both mean and standard deviation are zero | माध्य तथा मानक विकास दोनों शून्य है                                                               |
| None of these                             | इनमें से कोई नहीं                                                                                 |
|                                           | Zero standard deviation Zero mean Both mean and standard deviation are zero                       |

| Q.No: 199 | The mean of 15 observations is 3 and their range is zero. Then, maximum observation is | 15 प्रेक्षकों का माध्य 3 है तथा इनका परास शून्य है तो इनमें महत्तम प्रेक्षक है: |
|-----------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| A         | 0                                                                                      | 0                                                                               |
| В         | 3                                                                                      |                                                                                 |
| C         | More than 3                                                                            | 3 से अधिक                                                                       |
| D         | None of these                                                                          | इनमें से कोई नहीं                                                               |
|           |                                                                                        |                                                                                 |

| Q.No: 200 | If $r_{12}=r_{13}=r_{23}=r$ , the value of multiple correlation coefficient $R_{1(23)}$ is: | यदि $r_{12}=r_{13}=r_{23}=r$ है तो बहुसहसम्बंध गुणांक $R_{1(23)}$ का मान हैं: |
|-----------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| A         | 0                                                                                           | o .                                                                           |

