

- **Latest Govt Job updates**
- Private Job updates
- Free Mock tests available

Visit - teachingninja.in

RPSC

Previous Year Paper Lecturer (2011) प्रश्न पुस्तिका / QUESTION BOOKLET विषय / Subject:

Electrical Engineering

कोड'/ Code : 08

उस्तिका में पृष्ठों की संख्या / Number of Pages in Booklet: 16

पुस्तिका में प्रश्नों की संख्या /

Number of Questions in Booklet: 100

years Techedy

22.22.23

Electrical Engineering

80

A बुकलेट सीरीज

पूर्णांक / Maximum Marks : 100

गन्य / Time : 2 घंटे / Hours

INSTRUCTIONS

4. Answer all questions.

2. All questions carry equal marks.

3. Only one answer is to be given for each question.

 If more than one answers are marked, it would be treated as wrong answer.

5 Each question has four alternative responses marked scrially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.

6. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. (A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.)

The candidate should ensure that Series Code of the Question Paper Booklet and Answer Sheet 7. The Commission of the convelopes. In case they are different, a candidate must obtain another Question Paper of the same series. Candidate himself shall be responsible for casuring this.

Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per roles.

Please correctly fill your Roll Number in O.M.R. Sheet. 5 marks will be deducted for filling wrong incomplete Roll Number.

Warning: If a candidate is found copying or it any unauthorised material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted under Section 3 of the R.P.E. (Prevention of Unfairmeans) Act, 1992. Commission may also debar him/her permanently from all future examinations of the Commission.

- Y

- 1. सभी प्रश्नों के उत्तर दीजिए ।
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक हो उत्तर दीजिए।
- एक से अधिक उत्तर देने की दशा में प्रश्न के उत्तर को मनत माना जाएगा।
- 5. प्रत्येक प्रश्न के चार बैकल्पिक उत्तर दिवे तथे हैं, जिन्हें रूमझ: 1, 2, 3, 4 अंकित किया गया है। अध्यार्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अध्या जबल को उत्तर-पत्रक पर नीले बॉल घाइंट पेन से गहरा करना है।
- 6. प्रत्येक गतत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा अवायेगा। गतत उत्तर से तात्म्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अथिक उत्तर से हैं। किसी भी प्रश्न से संयंथित गोले या वयल को खाली छोड़्सा गतल उत्तर नहीं माना जायेगा!
- 7. प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के लिफाफे को सीक्ष खोतने पर परीक्षार्थी यह सुनिष्टिचल कर ले कि उसके प्रश्न-पत्र पुस्तिका पर यही सीरीज अकित है जो उत्तर वज्रक पर अंकित है। इसमें कोई भिन्नता हो तो बीक्षक से प्रश्न पण की ही सीरीज बाला दूसरा प्रश्न-पत्र का लिफापत प्राप्त कर ते। ऐसा न करने पर जिम्मेदारी अध्यर्थ की होगी।
- 8. मोबाईलं फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा ठॉल में प्रयोग पूर्णतया वर्णित हैं। यदि किसी अध्यक्षी के पास ऐसी कोई वर्णित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की आवेगी।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक यर सलधानी पूर्वक सही भरें। गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तोकों में से अनिवार्थ रूप से काटे आसंगे।

चेतावनी : अगर कोई अम्पर्थी नकल करते पकड़ा जाउा है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है. तो उस अभ्यर्थी के विरुद्ध पुलिस में प्राथिपकी दर्ज कराई जायेगी और आर. पी. ई. (अनुधित साथनों की रोकथाम) अधिनियम, 1992 के नियम 3 के तहत कार्यचाही की जायेगी। साथ ही आयोग ऐसे अभ्यर्थी को भीयच्य में होने वाली आयोग की समस्त परीक्षाओं से विवर्जित कर्ष सकता है।

@BEE6_A]

[Contd...

TO TO

Teachingninja.in

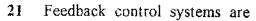
- In relation to the synchronous machines, which one of the following statements is false?
 - (1) In salient pole machines, the direct-axis synchronous reactance is greater than the quadrature-axis synchronous reactance
 - (2) The damper bars help the synchronous motor self-start
 - (3) Short circuit ratio is the ratio of the field current required to produce the rated voltage on open circuit to the rated armature current
 - (4) The V-curve of a synchronous motor represents the variation in the armature current with field excitation, at a given output power
- 2 In a DC machine, which of the following statements is true?
 - (1) Compensating winding is used for neutralizing armature reaction while inter pole winding is used for producing residual flux
 - (2) Compensating winding is used for improving commutation while inter pole winding is used for neutralizing armature reaction
 - (3) Compensating winding is used for improving commutation while inter pole winding is used for producing residual flux
 - (4) Compensating winding is used for neutralizing armature reaction while inter pole winding is used for improving commutation
- 3 A synchronous generator is feeding a zero power factor (lagging) load at rated current. The armature reaction is
 - (1) magnetizing
 - (2) demagnetizing
 - (3) cross-magnetizing
 - (4) ineffective
- In a transformer, zero voltage regulation at full load is
 - (I) not possible
 - (2) possible at unity power factor load
 - (3) possible at leading power factor load
 - (4) possible at lagging power factor load
 - The DC motor, which can provide zero speed regulation at full load without any controller, is
 - (1) series

- (2) shunt
- (3) cumulative compound
- (4) differential compound

08/BEE6_A

888888 588888

MINI [Contd...


6	A balanced three-phase, 50 I	Iz voltag	e is applied to a 3 p	hase, 4 pole
	induction motor. When the r	notor is	delivering rated outpu	t, the slip is
	found to be 0.05. The speed	d of the	rotor m.m.f. relative	to the rotor
	structure is	(2)	1.40.5	
	(1) 1500 r.p.m. (3) 25 r.p.m.	(2)	1425 r.p.m.	
	(3) 25 r.p.m.	(4)	75 r.p.m.	
7	A ceiling fan uses			•
•	(1) split-phase motor.	-		
•	(2) capacitor start and capa	acitor ru	motor	
	(3) universal motor.	icittii tui	motor.	
	(4) capacitor start motor.			
	(1) Start Motor.	. /	. O°	
8	To eliminate the 5th harmon	ic voltae	e from the phase vo	ltaga of am
	alternator, the coils need to	be short	pitched by an electri	ntage of an
	(1) 30°	(2)	36°	our u mbre or
	(3) 18°	(4)	72°	
				•
9	The magnetizing current in a	a transfor	mer is rich in	* .
	(1) 3 rd harmonic		2 nd harmonic	
	(3) 7 th harmonic		13 th harmonic	•
10	Auto-transformer is used in	transmiss	ion and distribution	•
	(1) When operator is not a			
	(2) When iron losses are to		iced	
	(3) When efficiency consider	erations c	an be ignored	
	(4) When the transformation			•
H	The surge impedance of a 40	00 km lo	ng overhead transmis	sion line is
	400 ohms. For a 200 km leng	gth of the	same line, the surge	impedance
	will be			
	(1) 200 ohms	(2)	300 ohms	
	(3) 400 ohms	(4)	00 ohms	
- A	4			
12	For a given base voltage and l	base volt-	amperes, the per unit	impedance
	value of an element is x. The	per unit	impedance value of t	his' element
	when the voltage and volt-an			is
	(1) $0.5x$		X	
	(3) 4x	(4) = x		

[Contd...

08/BEE6_A]

•			
13	The insulation resistance of	a 20 km lon	g underground cable is 8 mega
	ohm. Insulation resistance f		
	(1) 16 megaohm	` '	2 megaohm
	(3) 4 megaohm	(4) 2	megaohm
14	The insulation strength of an	EHV transm	ission line is mainly governed by
	(1) Load power factor	(2) S	witching over-voltages
	(3) Harmonics	(4) C	orona
15	Reeping in view the cost a breaker is best suited for	nd overall el capacitor ba	ffectiveness the following circuit nk switching
	(A) Vacuum	(2) A	Air blast
	(3) SF6	. ,)il
\$6			has following disadvantages.
	Thek the incorrect statement		
•	(1) Unreliable convergence	ce	
	(2) Slow convergence	m ()	
	(3) Choice of slack bus	affects conv	rergence
	(4) A good initial guess	for vontage:	s is essential for convergence
1'	7 High voltage DC (HVDC)) transmissio	n is mainly used for
1	(1) Bulk power transmis	sion over v	ery long distances
	(2) Inter-connecting two	systems wi	th the same nominal frequency
	(3) Eliminating reactive	power requi	rements in the operation
	(4) Minimizing harmonic	s at the co	nverter stations .
	The state of the s	at the fault	point in a power system are equal
1	8 If all the sequence voltages then the fault is a	at siic fauit	point in a power system in a
	(1) Three phase fault	(2)	Line to ground fault
	(3) Line to line fault	, .	Double line to ground fault
8			. 197. Causiainstina the
, ,	19 Which one of the following	ng relays has	the capability of anticipating the
ğ	possible major fault in a		Differential relay
9	(1) Over current relay	(2) (4)	Over fluxing relay
Ø	(3) Buchholz relay	(4)	Over maxing rows
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	30 For transmission line wh	ich one of	the following relations is true?
<b>25</b>	(1) $AD-BC = 1$	(2)	-AD-BC = 1
8	(3)  AD-BC = -1	(4)	
B		` '	
	08/BEE6_A]	4	[Contd

Teachingninja.in



- (1) Insensitive to both forward path and feedback path parameter changes
- (2) Less sensitive to feedback path parameter changes than to forward path parameter changes
- (3) Less sensitive to forward path parameter changes than to feedback path parameter changes
- (4) Equally sensitive to forward path and feedback path parameter changes
- 22 The type number of control system with

$$G(s) H(s) = K(s+2)/s(s^2+2s+3) is$$

(1) One

(2) Two

(3) Three

- (4) Four
- 23 The output of first order hold between two consecutive sampling instant is a
  - (1) Constant

- (2) Quadratic function
- (3) Ramp function
- (4) Exponential function
- Given a unity feedback system with G(s) = K/s(s+4), the value of K for damping ratio of 0.5 is
  - (1) 1

(2) 4

(3) 16

- (4) 64
- Which one of the following is the most likely reason for large overshoot in a control system?
  - (1) High gain in a system.
  - (2) Presence of dead time delay in a system
  - (3). High positive correcting torque
  - (4) High retarding torque
- The open-loop transfer function of a unity feedback control system is given by  $G(s) = K(s+2)/s(s^2+2s+2)$

The centroid and angles of root locus asymptotes are respectively

- (1) Zero and +90°, -90°
- (2) -2/3 and  $+60^{\circ}$ ,  $-60^{\circ}$
- (3) Zero and +120°, -120°
- (4) -2/3 and  $+90^{\circ}$ ,  $-90^{\circ}$

	B/BEE6	_A]	6			ontď		
0	(3)	6:3:2	(-	<del>I</del> ) - 6:	2:4			
	(1)	3:2:6	and the second s		4:6			
Ž		in the ratio $\Re_{1}$ :						
8		· .			$I_1:I_2:I_3$ if the branch resis			
88888888888888888888888888888888888888	i Thre	e parallel resisti	ve branches ar	e com	sected across a dc supply.	What		
Š	(3)	$1.5\Omega$ and $3\Omega$	! (-	4) 49	$\Omega$ and $0.5\Omega$			
8	(1)	$2\Omega$ and $2.5\Omega$			$\Omega$ and 3.4 $\Omega$			
9,		$\Omega$ when in p						
			_		esistance of 4.5 $\Omega$ when in	senes		
32	Tur	vanistare D. and	l D wine anoth	inad ro	wistance of 4 50 when in	anrine		
- //	(3)	O.5A in paralle	EWIÜD ƏD₩(°	+) 41	A in parallel with 100W.			
		•	•	-	A with 50W in series.			
-		tance of 50W						
31					voltage of 100 V and in	iternal		
	(4)			,	~ )			
	(3)		nd open loop		ency response	•		
	(2)	Open loop fre						
	(1).	Closed loop f			and analysis of			
30		ch one of the . iol's chart is us	-		is correct? dy and analysis of			
مراجع		_h	C. D. and .		in aggress 0			
	(-4)	all of the abo	ve					
	(3)	• • •						
	(2)	linear feedback	k control syste	ems or	nty			
•	(1)	nonlinear feed			•			
29		The bode diagram approach is the most commonly used method for the analysis and synthesis of						
			· ·					
	(3)			•	гее			
	(1)	zera	(3	2) on	ie			
28		the equation. s ³	$3-4s^2+s+6=0$ th	e nun	nber of roots in the left l	half of		
	(4)	By increasing	rae mpui					
	(3)	By decreasing		or con	stant			
	(2)	By increasing						
	(1)	By decreasing		ystem				
27	How	can steady sta		-	be reduced?			

34	Idea	d current source have		
	(1)	Zero internal resistance	· (2)	Infinite internal resistance
	(3)	Low value of voltage	(4)	Large value of current
35	Kirc	hhoff's laws are valid fo	r	
	(1)	Linear circuits only		
	(2)	Passive time invariant		
	(3)	Nonlinear circuits only		
	(4)	Both linear and nonline	ar circ	ruits only
36	Whi	ch of the following then inear circuits?	orems	is applicable for both linear and
	(1)	Superposition	(2)	Thevenin's
	(3)	Norton's	(4)	None of these
37	of l	8 W. When the same R same magnitude as the cur	is con rrent's	current source, it consumes a power nected to a voltage source having ource, the power absorbed by R is ource and the value of R are
	(1)	$\sqrt{18}$ Aand $+\Omega$	(2)	$3A$ and $2\Omega$
	(3)	IA and $18\Omega$	(4)	6A and 0.5 $\Omega$
38	Millr	nan's theorem yields equ	ivalent	
	(1)	Impedance or resistance		•
-	(2)	Current source		
	(3)	Voltage source		•
	(4)	Voltage or current source	<del>2</del>	•
				·
39	Wher powe	the power transferred to transfer is	the l	oad is maximum, the efficiency of
	(1)	25%	(2)	75%
	(3)	50%	(4)	100%
40	are ii	balanced Wheatstone bridg nterchanged, the bridge we be drawn from	e; if th vill stil	ne positions of detector and source I remain balanced. This inference
	(1)	Reciprocity theorem	(2)	Duality theorem
٠	(3)	Compensation theorem	(4)	Equivalence theorem
<b>08</b> /1	BEE6_	Aj	7	[Contd

4	ł	Space	e charge region around a p	-n ju	nction	
		(1)	does not contain mobile ca	rrier	S	
	-	(2)	contains both free electrons	s and	hole	S
		(3)	contains one type of mobil		rriers	depending on the level of
		(4)	contains electrons only as		carrie	rs .
_\$	2	The	important characteristic of e	emitte	er-folk	ower is
		(1)	high input impedance and	high	outpu	it impedance
		(2)	high input impedance and	low	outpu	t impedance
		(3)	low input impedance and I	ow (	output	impedance
		(4)	low input impedance and I	nigh	outpu	impedance
4	<b>i</b> 3		a JFET, when VDS is increa	ased	beyon	d the pinch off voltage, the
		<b>(1)</b>	Increases	(2)	Decre	eases
		(3)	Remains constant	(4)	First	decreases and then increases.
ال ا	14	A hi	istable multivibrazor is a			
	u ~:	{\b}.		(2)	Trico	ered oscillator
4		(3)		( <del>4</del> )		al oscillator
		1-7	Saw tooms wave generator	( 1)	01350	ui obvinator
ند	( <del>d</del>	Trans	sistor is a			
		(1)	Current controlled current	devic	e.	,
		(2)	- ·			
		(3)	Voltage controlled-current	deviç	e.	
		(4)	Voltage controlled voltage			• · · · · · · · · · · · · · · · · · · ·
						,
	ltr	For I	NOR circuit SR flip flop the	not	allowe	d condition is
Q		(1)	S=0, R=0	(2)	S=0,	R=1
SORRE L		(3)	S=1, R=1	(4)	S=1,	R=0
S		That	for out of a MOS logic rate	ia kia	.b.a.a.+b	on that of TTI cates have use
93	17	of it	fan-out of a MOS-logic gate	ទេ ពាខ្	មាន ពេ	an that of TTL gates because
		-51 st -41)	•	(2)	high	output impedance
July .			•	(4)	_	input impedance
Charles .		19]	ion outhor inherence	( <i>ግ</i> ያ	gu	mpat unpoamoe
100	)8/	BEE6		8		Contain.

Teachingninja.in

- 48 n-type silicon is obtained by
  - (1) Doping with tetravalent element
  - (2) Doping with pentavalent element
  - (3) Doping with trivalent element
  - (4) Doping with a mixture of trivalent and tetravalent element
- 49 A'literal' in Boolean Algebra means
  - (1) a variable in its uncomplemented form only
  - (2) a variable or with its complement
  - (3) a variable in its complemented form only
  - (4) a variable in its complemented or uncomplemented form
- 50 Which of the following Boolean rules is correct?
  - (1) A+0=0

- (2) A+1=1
- (3)  $\overline{A+A} = \overline{A \cdot A}$
- $(4) A + A \cdot B = \overline{A + B}$
- 54 Most of linear ICs are based on the two transistor differential amplifier because of its
  - (1) Input voltage dependent linear transfer characteristic.
  - (2) High voltage gain.
  - (3) High input resistance.
  - (4) High CMRR
- 52 Which of the following diodes is operated in reverse bias mode?
  - (1) P-N junction
- (2) Zener

(3) Tunnel

(4) Schottky

- 53 IFET is a
  - (1) Current controlled device with high input resistance
  - (2) Voltage controlled device with high input resistance
  - (3) Current Controlled Current Source (CCCS)
  - (4) Voltage Controlled Voltage Source (VCVS)
- 54 The depletion region in a Junction Diode contains
  - (1) only charge carriers (of minority type and majority type)
  - (2) no charge at all
  - (3) vacuum, and no atoms at all
  - (4) only ions i.e., immobile charges

F.	•			
Sec. 1	(3) 0.5 J	(4)	1.15 J	
133	(1) 0.015 J	(2)	0.15 J	
620 620	90A 18			
8 8 8	and 3 cm diameter	in the magnetic wound with 1000	field of a turns of wi	solenoid 30 cm lo
Æ.				
	(3) 5 mH	(2) _. (4)	10 mH Zero	
ñ	(1) 20 mH			series opposing?
	the equivalent inde	mH, when connect	ted in series	aiding. What will
L.	The coils having a	self inductance of	10 mH and	15 mH and effect
	(4) Zero		-	
		of 45° with the a	ixis	
	(2) Parallel to the			
*	(3) Perpendicular		OF OF CHIPSERS	- carying con will
598)	The field at any	point on the axis	of a comment	earrying coil will
	(4) Neither cond	luction nor displac	ement comp	onens
		tion and displacen		
		ement component		
	<del>-</del>	tion component		
<b>37</b> 7		is composed of w	hich of the	following?
				<b>(O)</b>
	(4) Equal to zer	б		
	(3) Greater than	-		
		ne but positive		
56	(V) Less than ze	ceptibility of a pa	ramagnenc :	material is
æ.a	The man and it			
	(4) angle of inc	idence of radiation	n	
	(3) work function	on of photo-cathod	te	
	(2) incident ligh	-		
	<ul> <li>(4) frequency of</li> </ul>	f the incident ligh		

51	The	difference between the in-	dicated v	value and true value of a quantity is	
	(1)	gross error	(2)	absolute error	
	(3)	dynamic error	(4)	relative error	,
62		defining the standard sidered?	meter,	value and true value of a quantity is absolute error relative error wavelength of which material is Krypton Xenon	, , ,
	(1)	Neon	(2)	Krypton	,
,	(3)	Helium	(4)	Xenon	P
63	Wire	e-wound resistors are uns	witable f	or use at high frequencies because	
	(1)	They are likely to mel			
	(2)	•		ve and capacitive effect	
	(3)	They create more elect			
	(4)	They consume more po			
64	Whi	ch of the following met	ers is a	n integrating type instrument?	
	(1)	Ammeter	(2)	Voltmeter	
	(3)	Wattmeter	(4)	Energy meter	
65	Indu	strial measuring instrume	ents are	of accuracy classes	
•	(1)	0.5 and 1	(2)	0.5, 1, 1.5, 2.5 and 5	
	(3)		(4)	1.0, 0.2 and 0.5	
66	Whi	ch of the following mete	rs does	not exhibit square law response?	
	(1)	Moving coil			
	(2)	Moving iron			
	(3)	Electrodynamometer			
	(4)	Hot wire instrument			
67	Deci	ibel scale is useful while	e measu	ring voltages covering	
	(1)	Wide frequency ratio		Wide voltage ratio	
	(3)	Narrow frequency range		•	
08/	BEE6	_A]	11	[Contd	

68	Wh	ich of the following is fiec	(14,74 )	quactesis and eddy current errors?
		Idusing con instrument		
	(2)			
	(3)	Moving coil permanent	લા <u>અ</u> દાવદા	IVDC Instrument
	(4)			
69	The	primary current in a Cf	is dict	ated by
		The secondary burden		
\$		The load current		
70	Whi	at is clamp-on ammerer u.	sta for	9
				High ac current
	(3)			High de cirrent
				. 0
715	$C_{Q0}$	e d noistaion y dividuale	phynor	neada which occurs in
		Power MOSFEET		GTO thyristor
	(3)	KIBT	(4)	Power bipolar transistor
72	$A^{\epsilon}$ $B$	hyristor can be termed as		
	(1)	DC switch	(2)	At switch
	(3)	Ewker (1) or (2)	(4)	Square wave switch
73.	Swpj	pose the anode current of a	conduc	ting SCR is 50A. If its gate current
		educed to one fifth, its an		
	-	10A	(2)	
	$(\beta)$	25A	$\{A_i\}$	Zervi
77.81	-31			
7%		on and turn off time of		
		Static characterimies		
	##)	Current gain.	( ))	None of the above
731	Trie	nyafarahla ta ner a tesar sit		
	of S	CR in order to reduce	M Clack in	high hespency for gate triggering
		dv/dt problem		
		aii/ik problem		
		the size of the pulse trai	sa da sa sa	
r j.		the complexity of the fir		•
ř. Yr.	119	me compressity of the Hi	ing cu	Litti
776	Whic	th of the following door was	SVI e tares s	permanent damage to an SCR ?
rı	(1)			
* *		-	1 4 5 1 4 5	thigh rate of rise of current. High rate of rise of voltage.
<b>3</b>			1,77 /	then late of tipe of Apprage
48/1	BEE5	A	13	[Conta
				The second and a second

77	Static	voltage	equalization	in	suries	connected	SCRs	is	obtained	bу
	the us	e of								

- (1) One resistor across the string
- (2) Resistors of different value across each SCR
- (3) Resistors of same value across each SCR
- (4) One resistor in series with the string

#### 78 A triac is a

- (1) 2 terminal switch
- (2) 2 terminal bilateral switch
- (3) 3 terminal unilateral switch
- (4) 3 terminal bidirectional switch

#### :79 Triac cannot be used in

- (1) AC voltage regulators (2) Cycloconverters
- (3) Solid state type of switch (4) histerier

#### 80 Resonant convertors are basically used to

- (1) Generate large peaky voltage
- (2) Reduce the switching losses
- (3) Eliminate harmonics
- (4) Convert a square wave into a sine wave

#### 81 A microprocessor is ALU

- (1) And control unit on a situal, thip
- (2) And memory on a single chip
- (3) Register unit and I/O device on a single chip
- (4) Register unit and control unit on a single chip

#### 82. The suitable programmable counter for 8086 microprocessor is

- (1) 8253 chip
- (2) 8254 chip

(3) 8359 chip

(1) 8251 chip

## 83 The program counter in a 8088 microprocessor is a 16-bit register, because

- (1) It counts 16-bits at a time
- (2) There are 16- address line
- (3) It facilitates the user for storing 16-bit data temporarily
- (4) It has to fetch two 8-bit does so a time

08/BEE6_AI

Contd...



84				code is referred to as
	(1) Object prog (3) Macroinstru		(2) (4)	. •
<b>\$5</b>	Both the ALU and storage location		on of (	CPU employ which special purpose
	(1) Buffers		(2)	Decoders
	(3) Accumulator	rs	(4)	Registers
\$ <b>6</b> ,	Which logical ope	eration is perfi	ormed	by ALU of 8085 to complement
	(I) AND		(2)	NOT
	(3) OR		(4)	EXCLUSIVE OR
8/7	In which unit is	the performan	oe of	cacite memory measured?
	(1) Hz		(2)	Bits/s
	(3) cache consta	nnt	(4)	Hit ratio
\$3 <b>3</b>	for an Intel 8085 instruction?	A, which is	alway	rs the first machine cycle of an
	(1) Am op-code	fetch cycle	(2)	A memory read cycle
	(3) A memory	write cycle	(4)	-
364	What is an interru	upt in which errupt request	the ex	cernal device supplies its address
	(i) Vectored inte			Maskable interrupt
	(3) Non-maskabl	e interrupt		None of the above
90	Which of the following	owing is not	a vect	tored interrupt ?
	(1) RST 7.5			RST 7
	(3) TRAP		(4)	INTR
91	The keyword used	l to define a	structi	are is
·	(1) Stru		(2)	Stt
r k k	(3) Struct		(4)	Structure
	Header files often	have the file	exter	nsion
ie.	(I) .H		(2)	HE
於	(3) HEA		(4)	.HEAD
*		:		•
	3886_A]	9	4	[Contd

93	The	#ifndef directive tests to :	see wł	nether	
(1) A class has been defined					
	(2)			alue	
	(3)	A class has no variable			
. 194	(4)	Any objects of the class		· ·	
, ,	(4)	Any objects of the class	паче	occii instantiated	
94	The	generic type in a template	e func	tion	
	(1)	Must be T			
	(2)	Can be T		4	
•	(3)	Cannot be T for function built-in functions	ons yo	u create, but may be for C++'s	
	(4)	Cannot be T			
95	A fi	unction is called automatica	lly eac	h time an object is destroyed is a	
,,,	(1)	Constructor	(2)	Destructor destroyed is a	
	(3)	Destroyer	` '	Terminator	
	(3)	Dositoyot .	(1)	. Communication	
96	The	step by step instructions	that so	olve a program are called	
	(1)	An algorithm		A list	
	(3)	A plan		A sequential structure	
			` ` `		
97	The	type to be used in an ins	stantia	tion of a class template follows	
	<b>(1)</b>	The generic class name	(2)	The keyword template	
	(3)	The keyword class	(4)	The template definition	
98	Whe	n you pass a variable	·	C++ passes only the contents of	
	the	variable to the receiving f	unctio	n ·	
	(1).	By reference	(2)	By value	
	(3)	Globally	(4)	Locally	
99	An	array name is a			
7	(1)	Subscript	(2)	Formal parameter	
	(3)	Memory address	(4)	Prototype	
100	Ove	rloaded functions are requi	red to		
	(1)	have the same return typ	e		
	<b>(2)</b>	have the same number of	f рага:	meters	
	(3)	perform the same basic t	functio	ns	
	(4)	none of the above			
08/1	ВЕЕб	. <b>A</b> 1	15	(Contd	
		^ ^}	# ==!	(BERRERIER CORECT	

### SPACE FOR ROUGH WOR

KRUSSSSS

(18/BEE6_A)

16

